Microscopic Characterization of the Infectious Process, ROS Production, and Fungi Cellular Death of Alternaria alternata on Tangerine Resistant to QoIs.

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY Microscopy Research and Technique Pub Date : 2025-02-01 Epub Date: 2024-10-10 DOI:10.1002/jemt.24710
Thiago Oliveira Condé, Adriano Francis Dorigan, Silvino Intra Moreira, Patricia Ricardino da Silveira, Eduardo Alves
{"title":"Microscopic Characterization of the Infectious Process, ROS Production, and Fungi Cellular Death of Alternaria alternata on Tangerine Resistant to QoIs.","authors":"Thiago Oliveira Condé, Adriano Francis Dorigan, Silvino Intra Moreira, Patricia Ricardino da Silveira, Eduardo Alves","doi":"10.1002/jemt.24710","DOIUrl":null,"url":null,"abstract":"<p><p>Quinone outside inhibitor (QoI) fungicide resistance in Alternaria alternata populations was reported in Brazil for the first time in 2019, in São Paulo orchards, and the mutation G143A in cytochrome b (cytb) was found in resistant isolates. Our study investigated the infectious process, production of reactive oxygen species (ROS), and fungal cell death in resistant (QoI-R) and sensitive (QoI-S) A. alternata pathotype tangerine (Aapt) isolates. Morphological characterization of Aapt isolates was performed using confocal laser scanning microscopy (CLSM). Alternaria brown spot (ABS) symptoms were produced by Aapt isolates on tangelo cv. BRS Piemonte. Germination of QoI-R conidia and production of germ tubes on tangelo leaflets treated with 100 μg mL<sup>-1</sup> of pyraclostrobin 18 h after inoculation (hai) was observed using scanning electron microscopy (SEM). At the same time, QoI-S conidial germination was inhibited on tangelo leaflets treated with pyraclostrobin. ROS production and cell death in Aapt isolates at high fungicide concentrations were observed using CLSM. QoI-S conidia exhibited high ROS production, indicating high oxidative stress. When dyed with propidium iodate (PI), QoI-S conidia emitted red fluorescence, showing cell death and confirming their sensitive phenotype. In contrast, QoI-R conidia neither produced ROS nor exhibited red fluorescence, indicating no cell death and confirming their resistant phenotype. Therefore, our findings evidence that microscopic techniques may help characterize events during fungi-plant interactions, ROS production, cell death, and Aapt phenotypes resistant and sensitive to QoIs using fluorometric protocols.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":"407-415"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24710","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quinone outside inhibitor (QoI) fungicide resistance in Alternaria alternata populations was reported in Brazil for the first time in 2019, in São Paulo orchards, and the mutation G143A in cytochrome b (cytb) was found in resistant isolates. Our study investigated the infectious process, production of reactive oxygen species (ROS), and fungal cell death in resistant (QoI-R) and sensitive (QoI-S) A. alternata pathotype tangerine (Aapt) isolates. Morphological characterization of Aapt isolates was performed using confocal laser scanning microscopy (CLSM). Alternaria brown spot (ABS) symptoms were produced by Aapt isolates on tangelo cv. BRS Piemonte. Germination of QoI-R conidia and production of germ tubes on tangelo leaflets treated with 100 μg mL-1 of pyraclostrobin 18 h after inoculation (hai) was observed using scanning electron microscopy (SEM). At the same time, QoI-S conidial germination was inhibited on tangelo leaflets treated with pyraclostrobin. ROS production and cell death in Aapt isolates at high fungicide concentrations were observed using CLSM. QoI-S conidia exhibited high ROS production, indicating high oxidative stress. When dyed with propidium iodate (PI), QoI-S conidia emitted red fluorescence, showing cell death and confirming their sensitive phenotype. In contrast, QoI-R conidia neither produced ROS nor exhibited red fluorescence, indicating no cell death and confirming their resistant phenotype. Therefore, our findings evidence that microscopic techniques may help characterize events during fungi-plant interactions, ROS production, cell death, and Aapt phenotypes resistant and sensitive to QoIs using fluorometric protocols.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗QoIs橘子上交替孢霉的感染过程、ROS产生和真菌细胞死亡的显微特征。
2019 年,巴西圣保罗果园首次报道了交替孢霉种群对醌外抑制剂(QoI)杀菌剂的抗性,并在抗性分离株中发现了细胞色素 b(cytb)的突变 G143A。我们的研究调查了抗性(QoI-R)和敏感(QoI-S)交替缠绕病原型柑橘(Aapt)分离物的感染过程、活性氧(ROS)的产生和真菌细胞的死亡。使用激光共聚焦扫描显微镜(CLSM)对 Aapt 分离物进行了形态学鉴定。Aapt 分离物在橘子品种 BRS Piemonte 上产生了交替孢属褐斑病(ABS)症状。BRS Piemonte。使用扫描电子显微镜(SEM)观察了接种(hai)18 小时后用 100 μg mL-1 吡唑醚菌酯处理的柚子小叶上 QoI-R 分生孢子的发芽情况和芽管的生成情况。同时,用吡唑醚菌酯处理的柚子小叶上的 QoI-S 分生孢子萌发也受到了抑制。使用 CLSM 观察了高杀菌剂浓度下 Aapt 分离物产生的 ROS 和细胞死亡情况。QoI-S 分生孢子表现出较高的 ROS 生成,表明氧化应激较高。当用碘酸丙啶(PI)染色时,QoI-S 分生孢子发出红色荧光,表明细胞死亡,证实了它们的敏感表型。相比之下,QoI-R 分生孢子既不产生 ROS,也不发出红色荧光,表明没有细胞死亡,证实了它们的抗性表型。因此,我们的研究结果证明,显微镜技术有助于利用荧光测定协议描述真菌与植物相互作用、ROS 产生、细胞死亡以及对 QoIs 抗性和敏感的 Aapt 表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
期刊最新文献
Visible Light-Triggered Catalytic Performance of Reduced Graphene Oxide Decorated With Copper Oxide Nanocomposite for Degradation of Rhodamine B Dye and Kinetics Studies. Fusion of Color Correction and HSV Segmentation Techniques for Automated Segmentation of Acute Lymphoblastic Leukemia. Macroscopic and microscopic investigations of determining elasto-mechanical properties of limequat fruit. The Investigation of Structural, Optical and Thermal Properties of Nickel Doped CeO2 Integrated PVC Nanocomposite. Microscopic Characterization of the Infectious Process, ROS Production, and Fungi Cellular Death of Alternaria alternata on Tangerine Resistant to QoIs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1