Optimization of body configuration and joint-driven attitude stabilization for transformable spacecraft under solar radiation pressure

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrodynamics Pub Date : 2024-02-08 DOI:10.1007/s42064-023-0167-3
Yuki Kubo, Toshihiro Chujo
{"title":"Optimization of body configuration and joint-driven attitude stabilization for transformable spacecraft under solar radiation pressure","authors":"Yuki Kubo,&nbsp;Toshihiro Chujo","doi":"10.1007/s42064-023-0167-3","DOIUrl":null,"url":null,"abstract":"<div><p>The solar sail is one of the most promising space exploration systems due to its theoretically infinite specific impulse achieved through solar radiation pressure (SRP). Recently, researchers have proposed “transformable spacecraft” capable of actively reconfiguring their body configurations using actuatable joints. Transformable spacecraft, if used similarly to solar sails, are expected to significantly enhance orbit and attitude control capabilities owing to their high redundancy in control degrees of freedom. However, controlling them becomes challenging due to their large number of inputs, leading previous researchers to impose strong constraints to limit their potential control capabilities. This study focuses on novel attitude control techniques for transformable spacecraft under SRP. We developed two methods, namely, joint angle optimization to obtain arbitrary SRP force and torque, and momentum damping control driven by joint angle actuation. Our proposed methods are formulated in a general manner and can be applied to any transformable spacecraft comprising front faces that can predominantly receive the SRP on each body. The validity of our proposed method is confirmed through numerical simulations. Our study contributes to making most of the high control redundancy of transformable spacecraft without the need for expendable propellants, thus significantly enhancing the orbit and attitude control capabilities.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0167-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The solar sail is one of the most promising space exploration systems due to its theoretically infinite specific impulse achieved through solar radiation pressure (SRP). Recently, researchers have proposed “transformable spacecraft” capable of actively reconfiguring their body configurations using actuatable joints. Transformable spacecraft, if used similarly to solar sails, are expected to significantly enhance orbit and attitude control capabilities owing to their high redundancy in control degrees of freedom. However, controlling them becomes challenging due to their large number of inputs, leading previous researchers to impose strong constraints to limit their potential control capabilities. This study focuses on novel attitude control techniques for transformable spacecraft under SRP. We developed two methods, namely, joint angle optimization to obtain arbitrary SRP force and torque, and momentum damping control driven by joint angle actuation. Our proposed methods are formulated in a general manner and can be applied to any transformable spacecraft comprising front faces that can predominantly receive the SRP on each body. The validity of our proposed method is confirmed through numerical simulations. Our study contributes to making most of the high control redundancy of transformable spacecraft without the need for expendable propellants, thus significantly enhancing the orbit and attitude control capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳辐射压力下可变型航天器的机体配置和关节驱动姿态稳定优化
太阳帆是最有前途的空间探索系统之一,因为它通过太阳辐射压力(SRP)实现了理论上的无限比冲。最近,研究人员提出了 "可变型航天器 "的建议,这种航天器能够利用可致动关节主动重新配置其主体结构。可变形航天器的使用方法与太阳帆类似,由于其控制自由度的冗余度较高,有望显著增强轨道和姿态控制能力。然而,由于其输入量大,对其进行控制具有挑战性,因此之前的研究人员对其施加了强大的约束,以限制其潜在的控制能力。本研究的重点是 SRP 条件下可变换航天器的新型姿态控制技术。我们开发了两种方法,即通过关节角度优化获得任意 SRP 力和扭矩,以及通过关节角度驱动动量阻尼控制。我们提出的方法是以通用方式制定的,可应用于任何由前端面组成的可变换航天器,这些前端面可以在每个主体上主要接收 SRP。我们提出的方法的有效性通过数值模拟得到了证实。我们的研究有助于充分利用可变换航天器的高控制冗余,而无需消耗推进剂,从而显著提高轨道和姿态控制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
期刊最新文献
Reinforced Lyapunov controllers for low-thrust lunar transfers Aerogel-based collection of ejecta material from asteroids from libration point orbits: Dynamics and capture design Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles Designing a concurrent detumbling and redirection mission for asteroid mining purposes via optimization Luring cooperative capture guidance strategy for the pursuit—evasion game under incomplete target information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1