The booming lignin-derived functional composites/nanocomposites

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-10-03 DOI:10.1016/j.compositesb.2024.111869
Lu-Lu Yuan , Han-Min Wang , Yu-Chun Wu , Qing-Xi Hou , Run-Cang Sun
{"title":"The booming lignin-derived functional composites/nanocomposites","authors":"Lu-Lu Yuan ,&nbsp;Han-Min Wang ,&nbsp;Yu-Chun Wu ,&nbsp;Qing-Xi Hou ,&nbsp;Run-Cang Sun","doi":"10.1016/j.compositesb.2024.111869","DOIUrl":null,"url":null,"abstract":"<div><div>Biobased materials are increasingly gaining prominence in the field of advanced ecofriendly materials, and biomass-derived functional composites are exhibiting immense promise due to their superior manufacturability, flexibility, and eco-efficiency. In recent years, many enlightening and remarkable works and multiple emerging functional composites have been achieved from lignin polymer. Lignin-derived functional composites (LFCs) can be tailored into diverse favorable blocks across multiple domains. Here, we review the state-of-the-art advances in the development and application of lignin-based advanced functional composites in several rising fields. The macromolecular structure and intrinsic properties of lignin are firstly elaborated in terms of versatile material fabrication. We then categorize the manufacturing strategies of lignin-derived building blocks for 3D printing, nanomaterials, hydrogels, biodegradable composites and electrochemical materials. In particular, their applications in environment, biomedicine, sensor, functional packaging, and energy storage are highlighted. Finally, we shed light on the bottlenecks and challenges of LFCs, and some potential opportunities and future prospects for novel biobased materials are discussed. We anticipate harnessing the potential of lignin-derived materials by leveraging green chemistry and viable technologies to facilitate biobased material development.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"287 ","pages":"Article 111869"},"PeriodicalIF":12.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006814","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biobased materials are increasingly gaining prominence in the field of advanced ecofriendly materials, and biomass-derived functional composites are exhibiting immense promise due to their superior manufacturability, flexibility, and eco-efficiency. In recent years, many enlightening and remarkable works and multiple emerging functional composites have been achieved from lignin polymer. Lignin-derived functional composites (LFCs) can be tailored into diverse favorable blocks across multiple domains. Here, we review the state-of-the-art advances in the development and application of lignin-based advanced functional composites in several rising fields. The macromolecular structure and intrinsic properties of lignin are firstly elaborated in terms of versatile material fabrication. We then categorize the manufacturing strategies of lignin-derived building blocks for 3D printing, nanomaterials, hydrogels, biodegradable composites and electrochemical materials. In particular, their applications in environment, biomedicine, sensor, functional packaging, and energy storage are highlighted. Finally, we shed light on the bottlenecks and challenges of LFCs, and some potential opportunities and future prospects for novel biobased materials are discussed. We anticipate harnessing the potential of lignin-derived materials by leveraging green chemistry and viable technologies to facilitate biobased material development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蓬勃发展的木质素衍生功能复合材料/纳米复合材料
生物基材料在先进生态环保材料领域的地位日益突出,生物质衍生功能复合材料因其卓越的可制造性、柔韧性和生态效益而前景广阔。近年来,人们利用木质素聚合物开发出了许多具有启发性的杰出作品和多种新兴功能复合材料。木质素衍生功能复合材料(LFCs)可在多个领域定制成各种有利块体。在此,我们回顾了木质素基高级功能复合材料在多个新兴领域的开发和应用的最新进展。我们首先从多功能材料制造的角度阐述了木质素的大分子结构和内在特性。然后,我们将木质素衍生构件的制造策略分为三维打印、纳米材料、水凝胶、生物可降解复合材料和电化学材料。特别强调了它们在环境、生物医学、传感器、功能性包装和能源储存方面的应用。最后,我们阐明了 LFCs 的瓶颈和挑战,并讨论了新型生物基材料的一些潜在机遇和未来前景。我们期待通过利用绿色化学和可行技术,发挥木质素衍生材料的潜力,促进生物基材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Spider web-inspired sericin/polyacrylamide composite hydrogel with super-low hysteresis for monitoring penalty of sports competition Engineered dECM-based microsystem promotes cartilage regeneration in osteoarthritis by synergistically enhancing chondrogenesis of BMSCs and anti-inflammatory effect On demand thermal surface modification of carbon fiber for improved interfacial shear strength Personalized customization of in-plane thermal conductive networks by a novel electrospinning method Microchannels-enabled vertical alignment of hexagonal boron nitride in silicone rubber composites to achieve high through-plane thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1