Polyethylene glycol modified polysiloxane and silver decorated expanded graphite composites with high thermal conductivity, EMI shielding, and leakage-free performance

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-11-30 DOI:10.1016/j.compositesb.2024.112041
Dexuan Lin , Chi Yu , Jianhua Guo , Geng Li , Xinghua Jiang , Yuanwei Yao , Xin Zhang
{"title":"Polyethylene glycol modified polysiloxane and silver decorated expanded graphite composites with high thermal conductivity, EMI shielding, and leakage-free performance","authors":"Dexuan Lin ,&nbsp;Chi Yu ,&nbsp;Jianhua Guo ,&nbsp;Geng Li ,&nbsp;Xinghua Jiang ,&nbsp;Yuanwei Yao ,&nbsp;Xin Zhang","doi":"10.1016/j.compositesb.2024.112041","DOIUrl":null,"url":null,"abstract":"<div><div>Phase change thermal interface materials (PCTIMs) have attracted significant attention due to their dual capability in temperature control and thermal buffering. However, the widespread application of PCTIMs in electronic devices is hindered by critical drawbacks such as low thermal conductivity (к), absence of electromagnetic interference shielding effectiveness (EMI SE), poor flexibility, and susceptibility to leakage. In this study, leakage<strong>-</strong>free PCTIMs were successfully fabricated with ultra<strong>-</strong>high thermal conductivity (к<sub>∥</sub> = 23.4 W m<sup>−1</sup> K<sup>−1</sup>, к<sub>⊥</sub> = 8.1 W m<sup>−1</sup> K<sup>−1</sup>), outstanding phase change functionality, exceptional EMI SE (73.2 dB), and excellent flexibility. A polyethylene glycol-modified polydimethylsiloxane (pPDMS) was synthesized through chemical grafting, demonstrating its significant potential as substrates for PCTIMs. Moreover, a designed material called silver nanoparticles-decorated expanded graphite (Ag-EG), was prepared to facilitate multidimensional material collaboration and incorporated into the pPDMS matrix to obtain Ag<strong>-</strong>EG@pPDMS composites. This integration resulted in a three<strong>-</strong>dimensional (3D) multi<strong>-</strong>layer orientation structure that enabled superior thermal conductivity in both in<strong>-</strong>plane and through<strong>-</strong>plane directions. To investigate the influence of 3D multi<strong>-</strong>layer orientation structure on Ag<strong>-</strong>EG@pPDMS, theoretical analysis was conducted using Effective Medium Theory (EMT) and Foygel thermal conduction models, which were further simulated by finite element analysis confirming substantial enhancement in material properties attributed to the 3D multi<strong>-</strong>layer orientation structure. Thermal management and electromagnetic interference (EMI) shielding applications were conducted using computers, wireless bluetooth earphones, and other electronic devices, indicating the superior thermal conductivity and EMI shielding of Ag<strong>-</strong>EG@pPDMS composites.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 112041"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008540","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change thermal interface materials (PCTIMs) have attracted significant attention due to their dual capability in temperature control and thermal buffering. However, the widespread application of PCTIMs in electronic devices is hindered by critical drawbacks such as low thermal conductivity (к), absence of electromagnetic interference shielding effectiveness (EMI SE), poor flexibility, and susceptibility to leakage. In this study, leakage-free PCTIMs were successfully fabricated with ultra-high thermal conductivity (к = 23.4 W m−1 K−1, к = 8.1 W m−1 K−1), outstanding phase change functionality, exceptional EMI SE (73.2 dB), and excellent flexibility. A polyethylene glycol-modified polydimethylsiloxane (pPDMS) was synthesized through chemical grafting, demonstrating its significant potential as substrates for PCTIMs. Moreover, a designed material called silver nanoparticles-decorated expanded graphite (Ag-EG), was prepared to facilitate multidimensional material collaboration and incorporated into the pPDMS matrix to obtain Ag-EG@pPDMS composites. This integration resulted in a three-dimensional (3D) multi-layer orientation structure that enabled superior thermal conductivity in both in-plane and through-plane directions. To investigate the influence of 3D multi-layer orientation structure on Ag-EG@pPDMS, theoretical analysis was conducted using Effective Medium Theory (EMT) and Foygel thermal conduction models, which were further simulated by finite element analysis confirming substantial enhancement in material properties attributed to the 3D multi-layer orientation structure. Thermal management and electromagnetic interference (EMI) shielding applications were conducted using computers, wireless bluetooth earphones, and other electronic devices, indicating the superior thermal conductivity and EMI shielding of Ag-EG@pPDMS composites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Editorial Board Near-infrared light-triggered smart response platform integrating CeO2@Black phosphorus for enhanced antimicrobial, anti-inflammatory, and osseointegration properties of titanium implants Polyethylene glycol modified polysiloxane and silver decorated expanded graphite composites with high thermal conductivity, EMI shielding, and leakage-free performance Breathable sandwich laminates with dynamic infrared camouflage for all-weather scenarios Research progress in chemical vapor deposition for high-temperature anti-oxidation/ablation coatings on thermal structural composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1