Yang Wu , HuaKun Zhou , WenJing Chen , HaoXiang Xue , HongFei Liu , Jie Wang , ShaoJuan Mao , GuoBin Liu , Sha Xue
{"title":"The combined nitrogen and phosphorus fertilizer application reduced soil multifunctionality in Qinghai-Tibet plateau grasslands, China","authors":"Yang Wu , HuaKun Zhou , WenJing Chen , HaoXiang Xue , HongFei Liu , Jie Wang , ShaoJuan Mao , GuoBin Liu , Sha Xue","doi":"10.1016/j.ejsobi.2024.103684","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of nitrogen (N) and phosphorus (P) fertilizer inputs on soil nutrient cycling and ecological function processes has garnered significant attention. Soil multifunctionality primarily refers to the soil's ability to perform multiple functions simultaneously, particularly the functions related to the genes involved in carbon (C), nitrogen (N), and phosphorus (P) cycles, which are critical for ecosystem sustainability. Despite this, the effects of N and P fertilizers on the expression of genes involved in soil carbon (C), nitrogen (N), and phosphorus (P) cycles, and their consequent influence on soil multifunctionality, remain unclear. To investigate this, we conducted a long-term nine-year experiment. The experimental site was fenced to prevent grazing and included four treatments: Control (no fertilizer), N (10 g N m<sup>−2</sup> y<sup>−1</sup>, urea), P (5 g P m<sup>−2</sup> y<sup>−1</sup>, Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>), and NP (10 g N and 5 g P m<sup>−2</sup> y<sup>−1</sup>, urea and Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>). We examined the effects of these treatments on soil microbial functional gene abundance and multifunctionality. Our findings revealed that N addition altered the composition of soil microbial functional genes but did not affect functional diversity. Both N and P inputs, as well as their combination, negatively impacted soil carbon fixation and the genes encoding enzymes for the degradation of starch, hemicellulose, cellulose, and chitin. N input also disrupted soil nitrogen and phosphorus cycling by inhibiting the expression of soil denitrification genes (<em>nirS</em> and <em>nosZ</em>), phytate hydrolase gene (<em>cphy</em>), and a phosphatase gene (<em>phoD</em>). Additionally, P input significantly inhibited functional genes involved in soil nitrification, denitrification, ammonification, nitrogen fixation, and ammonia oxidation processes. It also adversely affected phytate synthesis and degradation. The combined N and P inputs had a substantial negative impact on soil nitrification (<em>hao</em>), denitrification (<em>narG</em>, <em>nirK</em>, <em>nirS</em>, and <em>norZ</em>), ammonification (<em>gdh</em>), nitrogen fixation, annamox, and nitrogen reduction, and inhibited the expression of soil phosphorus cycle genes. Long-term phosphorus application was found to have a more detrimental effect on soil multifunctionality compared to nitrogen application. Furthermore, our study showed that vegetation diversity and abundance are crucial drivers of soil carbon, nitrogen, and phosphorus cycling functional genes and multifunctionality. We concluded that N and P inputs alter soil multifunctionality by influencing vegetation diversity; therefore, maintaining vegetation diversity is essential for sustaining soil multifunctionality.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103684"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556324000906","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of nitrogen (N) and phosphorus (P) fertilizer inputs on soil nutrient cycling and ecological function processes has garnered significant attention. Soil multifunctionality primarily refers to the soil's ability to perform multiple functions simultaneously, particularly the functions related to the genes involved in carbon (C), nitrogen (N), and phosphorus (P) cycles, which are critical for ecosystem sustainability. Despite this, the effects of N and P fertilizers on the expression of genes involved in soil carbon (C), nitrogen (N), and phosphorus (P) cycles, and their consequent influence on soil multifunctionality, remain unclear. To investigate this, we conducted a long-term nine-year experiment. The experimental site was fenced to prevent grazing and included four treatments: Control (no fertilizer), N (10 g N m−2 y−1, urea), P (5 g P m−2 y−1, Ca(H2PO4)2), and NP (10 g N and 5 g P m−2 y−1, urea and Ca(H2PO4)2). We examined the effects of these treatments on soil microbial functional gene abundance and multifunctionality. Our findings revealed that N addition altered the composition of soil microbial functional genes but did not affect functional diversity. Both N and P inputs, as well as their combination, negatively impacted soil carbon fixation and the genes encoding enzymes for the degradation of starch, hemicellulose, cellulose, and chitin. N input also disrupted soil nitrogen and phosphorus cycling by inhibiting the expression of soil denitrification genes (nirS and nosZ), phytate hydrolase gene (cphy), and a phosphatase gene (phoD). Additionally, P input significantly inhibited functional genes involved in soil nitrification, denitrification, ammonification, nitrogen fixation, and ammonia oxidation processes. It also adversely affected phytate synthesis and degradation. The combined N and P inputs had a substantial negative impact on soil nitrification (hao), denitrification (narG, nirK, nirS, and norZ), ammonification (gdh), nitrogen fixation, annamox, and nitrogen reduction, and inhibited the expression of soil phosphorus cycle genes. Long-term phosphorus application was found to have a more detrimental effect on soil multifunctionality compared to nitrogen application. Furthermore, our study showed that vegetation diversity and abundance are crucial drivers of soil carbon, nitrogen, and phosphorus cycling functional genes and multifunctionality. We concluded that N and P inputs alter soil multifunctionality by influencing vegetation diversity; therefore, maintaining vegetation diversity is essential for sustaining soil multifunctionality.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.