Earthworm burrows affect vertical distribution of springtails in soil

IF 3.7 2区 农林科学 Q1 ECOLOGY European Journal of Soil Biology Pub Date : 2025-01-30 DOI:10.1016/j.ejsobi.2025.103710
A.F. Krediet , B.S. Mönnich , J. Ellers , M.P. Berg
{"title":"Earthworm burrows affect vertical distribution of springtails in soil","authors":"A.F. Krediet ,&nbsp;B.S. Mönnich ,&nbsp;J. Ellers ,&nbsp;M.P. Berg","doi":"10.1016/j.ejsobi.2025.103710","DOIUrl":null,"url":null,"abstract":"<div><div>Extreme climatic events, such as prolonged dry spells, are causing more intense soil droughts, which can be a major threat to soil life. Soil animals in general are rather sensitive to strong fluctuations in soil moisture content but may be able to escape from drought by moving deeper into the soil. Bioturbation, for example by burrowing activity of earthworms, may facilitate such vertical movement and hence moderate the consequences of drought for soil animals. Here, we investigated if earthworm burrows enable soil-dwelling Collembola to move deeper into the soil and escape drought conditions. We also tested if drought affects bioturbation activity of earthworms, and measured evaporation from soil under drought conditions. Using transparent 2D-terraria, we analyzed the effect of four burrow treatments (i.e. burrows from an anecic earthworm species, burrows from an endogeic earthworm species, artificially made burrows, no burrows), each subjected to either drought or normal soil moisture conditions. We added 40 euedaphic springtails (<em>Folsomia candida</em>) per terrarium. After two weeks, we recorded survival of the springtails and their vertical localization in the soil. We used computer vision to estimate the cover and average depth of bioturbated area from photographs of the 2D-terraria. We found that the presence of <em>Aporrectodea caliginosa</em> (endogeic) increased the survival of springtails. Under normal moisture conditions, springtails were found deeper in the soil in the presence of <em>A. longa</em> (anecic). <em>Aporrectodea longa</em> strongly increased evaporation under normal soil moisture conditions. Our experiment showed that earthworms may moderate the impact of drought on euedaphic springtails, which opens up the hypothesis that other soil fauna may benefit as well from earthworm burrowing activity.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103710"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556325000020","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme climatic events, such as prolonged dry spells, are causing more intense soil droughts, which can be a major threat to soil life. Soil animals in general are rather sensitive to strong fluctuations in soil moisture content but may be able to escape from drought by moving deeper into the soil. Bioturbation, for example by burrowing activity of earthworms, may facilitate such vertical movement and hence moderate the consequences of drought for soil animals. Here, we investigated if earthworm burrows enable soil-dwelling Collembola to move deeper into the soil and escape drought conditions. We also tested if drought affects bioturbation activity of earthworms, and measured evaporation from soil under drought conditions. Using transparent 2D-terraria, we analyzed the effect of four burrow treatments (i.e. burrows from an anecic earthworm species, burrows from an endogeic earthworm species, artificially made burrows, no burrows), each subjected to either drought or normal soil moisture conditions. We added 40 euedaphic springtails (Folsomia candida) per terrarium. After two weeks, we recorded survival of the springtails and their vertical localization in the soil. We used computer vision to estimate the cover and average depth of bioturbated area from photographs of the 2D-terraria. We found that the presence of Aporrectodea caliginosa (endogeic) increased the survival of springtails. Under normal moisture conditions, springtails were found deeper in the soil in the presence of A. longa (anecic). Aporrectodea longa strongly increased evaporation under normal soil moisture conditions. Our experiment showed that earthworms may moderate the impact of drought on euedaphic springtails, which opens up the hypothesis that other soil fauna may benefit as well from earthworm burrowing activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Soil Biology
European Journal of Soil Biology 环境科学-生态学
CiteScore
6.90
自引率
0.00%
发文量
51
审稿时长
27 days
期刊介绍: The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.
期刊最新文献
Earthworm burrows affect vertical distribution of springtails in soil Carbon and energy utilization in microbial cell extracts from soil Effects of long-term sugarcane-soybean intercropping coupled with varying levels of nitrogen input on soil legacies: A field experimental study Soil phosphorus dynamics and its correlation with ectomycorrhizal fungi following forest conversion in subtropical conifer (Picea asperata) forests Biosolids blended with edaphic supports mimic structural and biochemical features of natural soils and foster plant biomass growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1