Effects of long-term sugarcane-soybean intercropping coupled with varying levels of nitrogen input on soil legacies: A field experimental study

IF 3.7 2区 农林科学 Q1 ECOLOGY European Journal of Soil Biology Pub Date : 2025-01-30 DOI:10.1016/j.ejsobi.2025.103711
Shiqiang Ge , Muhammad Shoaib Rana , Zixuan Li , Yongjian Chen , Zixuan Wang , Chang Shen , Tantan Zhang , Yinghua Shu , Jianwu Wang
{"title":"Effects of long-term sugarcane-soybean intercropping coupled with varying levels of nitrogen input on soil legacies: A field experimental study","authors":"Shiqiang Ge ,&nbsp;Muhammad Shoaib Rana ,&nbsp;Zixuan Li ,&nbsp;Yongjian Chen ,&nbsp;Zixuan Wang ,&nbsp;Chang Shen ,&nbsp;Tantan Zhang ,&nbsp;Yinghua Shu ,&nbsp;Jianwu Wang","doi":"10.1016/j.ejsobi.2025.103711","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term agricultural management practices alter the biochemical properties of soil, leading to the formation of distinct soil legacies. Sugarcane-soybean intercropping is recognized as a sustainable and stable agricultural practice, while the application of nitrogen (N) fertilizer is essential for enhancing crop yields. However, research on the effects of long-term sugarcane-soybean intercropping coupled with varying N levels on soil legacies remains limited. Therefore, we selected four treatments in a long-term field experiment: sugarcane monoculture with reduced N application (MSN1), sugarcane monoculture with conventional N application (MSN2), sugarcane-soybean intercropping with reduced N application (SB2N1), and sugarcane-soybean intercropping with conventional N application (SB2N2). The study aims to investigate the effects of soybean intercropping coupled with varying N application levels on soil abiotic (chemical properties) and biotic (microbial communities) legacies. The results showed that under conventional N application (525 kg ha<sup>−1</sup>), intercropping, compared to monoculture, significantly increased the contents of total potassium (TK), nitrate nitrogen (NO<sub>3</sub><sup>−</sup>), available zinc (AZn) and the network complexity of the arbuscular mycorrhizal fungi (AMF) community. Under intercropping conditions, reduced N application (300 kg ha⁻<sup>1</sup>), compared to conventional N application, significantly increased the content of exchangeable calcium (ECa), pH, as well as the alpha diversity and network complexity of the bacterial community. Under monocropping conditions, conventional N application significantly increased the complexity of the bacterial community network. Stochastic processes dominated the assembly of bacterial and AMF communities, but under the same cropping pattern, deterministic processes in fungal communities increased with N application. Soil pH, N nutrients, and trace metal elements are key factors affecting the diversity and composition of soil microbial communities. These findings highlight the significant impact of intercropped soybean on soil legacies, whereas the N level of application plays a key role in regulating the effectiveness of biotic and abiotic soil legacies. This study provides valuable insights into managing soil legacies and provides a theoretical basis for the development of sustainable agriculture.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103711"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556325000032","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term agricultural management practices alter the biochemical properties of soil, leading to the formation of distinct soil legacies. Sugarcane-soybean intercropping is recognized as a sustainable and stable agricultural practice, while the application of nitrogen (N) fertilizer is essential for enhancing crop yields. However, research on the effects of long-term sugarcane-soybean intercropping coupled with varying N levels on soil legacies remains limited. Therefore, we selected four treatments in a long-term field experiment: sugarcane monoculture with reduced N application (MSN1), sugarcane monoculture with conventional N application (MSN2), sugarcane-soybean intercropping with reduced N application (SB2N1), and sugarcane-soybean intercropping with conventional N application (SB2N2). The study aims to investigate the effects of soybean intercropping coupled with varying N application levels on soil abiotic (chemical properties) and biotic (microbial communities) legacies. The results showed that under conventional N application (525 kg ha−1), intercropping, compared to monoculture, significantly increased the contents of total potassium (TK), nitrate nitrogen (NO3), available zinc (AZn) and the network complexity of the arbuscular mycorrhizal fungi (AMF) community. Under intercropping conditions, reduced N application (300 kg ha⁻1), compared to conventional N application, significantly increased the content of exchangeable calcium (ECa), pH, as well as the alpha diversity and network complexity of the bacterial community. Under monocropping conditions, conventional N application significantly increased the complexity of the bacterial community network. Stochastic processes dominated the assembly of bacterial and AMF communities, but under the same cropping pattern, deterministic processes in fungal communities increased with N application. Soil pH, N nutrients, and trace metal elements are key factors affecting the diversity and composition of soil microbial communities. These findings highlight the significant impact of intercropped soybean on soil legacies, whereas the N level of application plays a key role in regulating the effectiveness of biotic and abiotic soil legacies. This study provides valuable insights into managing soil legacies and provides a theoretical basis for the development of sustainable agriculture.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Soil Biology
European Journal of Soil Biology 环境科学-生态学
CiteScore
6.90
自引率
0.00%
发文量
51
审稿时长
27 days
期刊介绍: The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.
期刊最新文献
Earthworm burrows affect vertical distribution of springtails in soil Carbon and energy utilization in microbial cell extracts from soil Effects of long-term sugarcane-soybean intercropping coupled with varying levels of nitrogen input on soil legacies: A field experimental study Soil phosphorus dynamics and its correlation with ectomycorrhizal fungi following forest conversion in subtropical conifer (Picea asperata) forests Biosolids blended with edaphic supports mimic structural and biochemical features of natural soils and foster plant biomass growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1