Yinjiao He , Jin Yang , J.P. Oliveira , Ruijun Wang , Ruijie Hao , Yixuan Zhao , Junhua Shao , Yiyu Xu , Jianguang Zhai
{"title":"Laser transmission joining of plasma treated polypropylene to stainless steel: Interfacial microstructure and mechanical properties","authors":"Yinjiao He , Jin Yang , J.P. Oliveira , Ruijun Wang , Ruijie Hao , Yixuan Zhao , Junhua Shao , Yiyu Xu , Jianguang Zhai","doi":"10.1016/j.optlastec.2024.111930","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid joints between polypropylene (PP) and 316L stainless steel (316L) have been widely used in various industrial fields, such as automotive, medical equipment, and electronic devices. The difficulty in the joining PP to 316L is that the former is a non-polar polymer, which makes it difficult to initiate a chemical reaction at the interface between the two materials. This ultimately results in a joint with low strength. Additionally, the melting point and thermal conductivity of the two materials differ significantly, so it is necessary to properly control the laser heat input. To tackle this challenge, the PP surface was pre-treated by plasma and then joined to 316L by laser transmission welding technology. The polar groups introduced by the plasma-treated PP form new chemical bonds with the metal and metal oxides of 316L, resulting in high quality dissimilar joints. The macromorphology and microstructure of the interface were investigated comparatively with different scanning speeds. The results showed that the optimal scanning speed was 10 mm/s at a laser power of 60 W and a defocusing distance of 0 mm, resulting in a maximum lap shear force of 149.18 N and an optimal macroscopic morphology. Furthermore, the correlation between the change in weld morphology and the mechanical properties was investigated, and the morphological and chemical bonding of the fracture were analyzed to elucidate the joint connection mechanisms.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111930"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224013884","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid joints between polypropylene (PP) and 316L stainless steel (316L) have been widely used in various industrial fields, such as automotive, medical equipment, and electronic devices. The difficulty in the joining PP to 316L is that the former is a non-polar polymer, which makes it difficult to initiate a chemical reaction at the interface between the two materials. This ultimately results in a joint with low strength. Additionally, the melting point and thermal conductivity of the two materials differ significantly, so it is necessary to properly control the laser heat input. To tackle this challenge, the PP surface was pre-treated by plasma and then joined to 316L by laser transmission welding technology. The polar groups introduced by the plasma-treated PP form new chemical bonds with the metal and metal oxides of 316L, resulting in high quality dissimilar joints. The macromorphology and microstructure of the interface were investigated comparatively with different scanning speeds. The results showed that the optimal scanning speed was 10 mm/s at a laser power of 60 W and a defocusing distance of 0 mm, resulting in a maximum lap shear force of 149.18 N and an optimal macroscopic morphology. Furthermore, the correlation between the change in weld morphology and the mechanical properties was investigated, and the morphological and chemical bonding of the fracture were analyzed to elucidate the joint connection mechanisms.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems