Mengfan Yuan , Wenkun Zhu , Hongliang Qi , Xingyi Wang , Lei Zhang , Yupeng Li , Rui Sun
{"title":"Numerical analysis of the ignition and gas-phase flame evolution of pulverized coal based on online experimental diagnostics","authors":"Mengfan Yuan , Wenkun Zhu , Hongliang Qi , Xingyi Wang , Lei Zhang , Yupeng Li , Rui Sun","doi":"10.1016/j.joei.2024.101843","DOIUrl":null,"url":null,"abstract":"<div><div>A transient ignition model employing a reduced chemical mechanism was developed to investigate the ignition characteristics and the gas-phase flame evolution of pulverized coal particles. The chemical percolation devolatilization (CPD) model was chosen to simulate the devolatilization process, and its accuracy was validated using a high-temperature entrained-flow reactor. Additionally, a novel method was introduced to cross-validate the single-particle simulation results with real-time OH-PLIF experimental measurements of particle streams, particularly at a large particle spacing ratio. The ignition mode was determined using the ignition delay time and volatile burnout time. Results show that as the oxygen volume fraction increases from 5% to 50% at a temperature of 1800 K, the ignition mode transitions from homogeneous ignition (GI) to heterogeneous ignition (HI). Notably, the same ignition mode was observed regardless of whether GI was defined using gas-phase temperature or OH levels. In the homo-heterogeneous ignition mode, the gas-phase flame intensity, characterized by OH levels, increases rapidly, then decreases, and re-increases slightly. The sequence of gas-phase reactions initiates with volatile combustion, followed by the co-combustion of residual volatiles and newly generated CO, and culminates in the combustion of CO itself. Online experimental findings confirmed that CO originates from char oxidation. Throughout this process, the gas-phase flame front extends outward until the volatiles are consumed.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101843"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003210","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A transient ignition model employing a reduced chemical mechanism was developed to investigate the ignition characteristics and the gas-phase flame evolution of pulverized coal particles. The chemical percolation devolatilization (CPD) model was chosen to simulate the devolatilization process, and its accuracy was validated using a high-temperature entrained-flow reactor. Additionally, a novel method was introduced to cross-validate the single-particle simulation results with real-time OH-PLIF experimental measurements of particle streams, particularly at a large particle spacing ratio. The ignition mode was determined using the ignition delay time and volatile burnout time. Results show that as the oxygen volume fraction increases from 5% to 50% at a temperature of 1800 K, the ignition mode transitions from homogeneous ignition (GI) to heterogeneous ignition (HI). Notably, the same ignition mode was observed regardless of whether GI was defined using gas-phase temperature or OH levels. In the homo-heterogeneous ignition mode, the gas-phase flame intensity, characterized by OH levels, increases rapidly, then decreases, and re-increases slightly. The sequence of gas-phase reactions initiates with volatile combustion, followed by the co-combustion of residual volatiles and newly generated CO, and culminates in the combustion of CO itself. Online experimental findings confirmed that CO originates from char oxidation. Throughout this process, the gas-phase flame front extends outward until the volatiles are consumed.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.