Tao Zeng , Lijun Wei , Yingquan Duo , Chao Chen , Rujun Wang , Guoliang Yang , Sining Chen
{"title":"A novel methodology for dynamic vulnerability assessment of storage tank exposed to technological hazards","authors":"Tao Zeng , Lijun Wei , Yingquan Duo , Chao Chen , Rujun Wang , Guoliang Yang , Sining Chen","doi":"10.1016/j.jlp.2024.105457","DOIUrl":null,"url":null,"abstract":"<div><div>Storage tanks are vulnerable to catastrophic technological hazards such as fires or explosions. Although many attempts have been made to assess the tank vulnerability exposed to a certain fire or explosion, little attention has been paid to the uncertainties of diverse accident scenarios and time-dependent damage effects. In this paper, a novel methodology is developed to dynamically estimate the vulnerability of chemical storage tank, while the static and dynamic factors related to tank vulnerability are studied in a unified framework. The uncertainties in the evolution of technological hazard are discretized and assessed using the dynamic event tree, in which the dynamic possibility of ignition and potential scenario transition are taken into account. Furthermore, a detailed study of the dynamic consequence and time-dependent damage behavior of physical effects is conducted, supporting a more accurate assessment of tank vulnerability. The case study demonstrates that the developed methodology could simulate the stochastic process of spatio-temporal evolution of technological hazards and enable a comprehensive analysis of damage patterns over time. Besides, the protection and mitigation effects of different safety barriers are evaluated and discussed, the results are valuable for reducing the risks of tank farms.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"92 ","pages":"Article 105457"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024002158","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Storage tanks are vulnerable to catastrophic technological hazards such as fires or explosions. Although many attempts have been made to assess the tank vulnerability exposed to a certain fire or explosion, little attention has been paid to the uncertainties of diverse accident scenarios and time-dependent damage effects. In this paper, a novel methodology is developed to dynamically estimate the vulnerability of chemical storage tank, while the static and dynamic factors related to tank vulnerability are studied in a unified framework. The uncertainties in the evolution of technological hazard are discretized and assessed using the dynamic event tree, in which the dynamic possibility of ignition and potential scenario transition are taken into account. Furthermore, a detailed study of the dynamic consequence and time-dependent damage behavior of physical effects is conducted, supporting a more accurate assessment of tank vulnerability. The case study demonstrates that the developed methodology could simulate the stochastic process of spatio-temporal evolution of technological hazards and enable a comprehensive analysis of damage patterns over time. Besides, the protection and mitigation effects of different safety barriers are evaluated and discussed, the results are valuable for reducing the risks of tank farms.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.