Explosion hazards and mechanisms of hydrogen at elevated temperature and pressure

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL Journal of Loss Prevention in The Process Industries Pub Date : 2025-03-13 DOI:10.1016/j.jlp.2025.105634
Yingquan Qi, Yong Pan, Shanshan Liu, Jingran Liu, Ran Ye, Zhenhua Wang
{"title":"Explosion hazards and mechanisms of hydrogen at elevated temperature and pressure","authors":"Yingquan Qi,&nbsp;Yong Pan,&nbsp;Shanshan Liu,&nbsp;Jingran Liu,&nbsp;Ran Ye,&nbsp;Zhenhua Wang","doi":"10.1016/j.jlp.2025.105634","DOIUrl":null,"url":null,"abstract":"<div><div>To ensure the safe utilization of hydrogen energy and promote the rapid development of the hydrogen industry, the explosive characteristics and reaction mechanisms of hydrogen at high temperatures and pressures have been studied through both experiments and simulations. The results indicate that the initial pressure is positively correlated with the lower flammability limit of H<sub>2</sub> but is insensitive to changes in initial temperature. Further investigation into the upper flammability limit reveals a significant nonlinear relationship with the initial pressure, following a power function increase. In contrast, the effect of initial temperature on the upper flammability limit shows a more straightforward linear characteristic. Explosion pressure increases proportionally with initial pressure and decreases linearly as the initial temperature rises. The laminar burning velocity of hydrogen at various temperatures and pressures is measured using the constant volume method and compared with simulation results. Sensitivity analysis is employed to identify the key controlling reactions of hydrogen explosions at different pressures and temperatures and to explore their synergistic effects. Finally, a predictive model for hydrogen explosion pressure at high temperatures and pressures is developed using the K-Nearest Neighbors (KNN) algorithm through machine learning.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"96 ","pages":"Article 105634"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423025000920","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the safe utilization of hydrogen energy and promote the rapid development of the hydrogen industry, the explosive characteristics and reaction mechanisms of hydrogen at high temperatures and pressures have been studied through both experiments and simulations. The results indicate that the initial pressure is positively correlated with the lower flammability limit of H2 but is insensitive to changes in initial temperature. Further investigation into the upper flammability limit reveals a significant nonlinear relationship with the initial pressure, following a power function increase. In contrast, the effect of initial temperature on the upper flammability limit shows a more straightforward linear characteristic. Explosion pressure increases proportionally with initial pressure and decreases linearly as the initial temperature rises. The laminar burning velocity of hydrogen at various temperatures and pressures is measured using the constant volume method and compared with simulation results. Sensitivity analysis is employed to identify the key controlling reactions of hydrogen explosions at different pressures and temperatures and to explore their synergistic effects. Finally, a predictive model for hydrogen explosion pressure at high temperatures and pressures is developed using the K-Nearest Neighbors (KNN) algorithm through machine learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
期刊最新文献
Explosion hazards and mechanisms of hydrogen at elevated temperature and pressure Acid-base synergetic effect and thermal risk assessment on homogeneous catalytic production of γ-valerolactone with formic acid Experimental study on ignition and flame propagation of hydrogen/carbon black hybrid mixtures in a vertical tube Systematic literature review on the risk assessment of ammonia refrigeration systems in the food industry Risk evaluation of submarine pipelines using improved FMEA model based on social network analysis and extended GLDS method under a linguistic Z-number preference relation environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1