Applications of piezoelectric biomaterials in dental treatments: A review of recent advancements and future prospects

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2024-10-04 DOI:10.1016/j.mtbio.2024.101288
Kaichen Zeng , Yifan Lin , Shirong Liu , Ziyan Wang , Lvhua Guo
{"title":"Applications of piezoelectric biomaterials in dental treatments: A review of recent advancements and future prospects","authors":"Kaichen Zeng ,&nbsp;Yifan Lin ,&nbsp;Shirong Liu ,&nbsp;Ziyan Wang ,&nbsp;Lvhua Guo","doi":"10.1016/j.mtbio.2024.101288","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric biomaterials have attracted considerable attention in dental medicine due to their unique ability to convert mechanical force into electricity and catalyze reactions. These materials demonstrate biocompatibility, high bioactivity, and stability, making them suitable for applications such as tissue regeneration, caries prevention, and periodontal disease treatment. Despite their significant potential, the clinical application of these materials in treating oral diseases remains limited, facing numerous challenges in clinical translation. Therefore, further research and data are crucial to advance their application in dentistry. The review emphasizes the transformative impact of multifunctional piezoelectric biomaterials on enhancing dental therapies and outlines future directions for their integration into oral healthcare practices.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101288"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003491","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric biomaterials have attracted considerable attention in dental medicine due to their unique ability to convert mechanical force into electricity and catalyze reactions. These materials demonstrate biocompatibility, high bioactivity, and stability, making them suitable for applications such as tissue regeneration, caries prevention, and periodontal disease treatment. Despite their significant potential, the clinical application of these materials in treating oral diseases remains limited, facing numerous challenges in clinical translation. Therefore, further research and data are crucial to advance their application in dentistry. The review emphasizes the transformative impact of multifunctional piezoelectric biomaterials on enhancing dental therapies and outlines future directions for their integration into oral healthcare practices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电生物材料在牙科治疗中的应用:最新进展和未来展望综述
压电生物材料具有将机械力转化为电能并催化反应的独特能力,因此在牙科医学中备受关注。这些材料具有生物相容性、高生物活性和稳定性,因此适用于组织再生、龋齿预防和牙周病治疗等应用。尽管这些材料具有巨大的潜力,但其在治疗口腔疾病方面的临床应用仍然有限,在临床转化方面面临诸多挑战。因此,进一步的研究和数据对于推动其在牙科领域的应用至关重要。这篇综述强调了多功能压电生物材料对加强牙科治疗的变革性影响,并概述了将其融入口腔医疗实践的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
A novel nanomedicine integrating ferroptosis and photothermal therapy, well-suitable for PD-L1-mediated immune checkpoint blockade Nickel–titanium alloy porous scaffolds based on a dominant cellular structure manufactured by laser powder bed fusion have satisfactory osteogenic efficacy A high-water retention, self-healing hydrogel thyroid model for surgical training Injectable microgels containing genetically engineered bacteria for colon cancer therapy through programmed Chemokine expression Multifunctional hydrogels loaded with tellurium nanozyme for spinal cord injury repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1