An “EVs-in-ECM” mimicking system orchestrates transcription and translation of RUNX1 for in-situ cartilage regeneration

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2025-02-14 DOI:10.1016/j.mtbio.2025.101569
Qi Cheng , Qianping Guo , Xiaoyu Zhang , Yuanchen Zhu , Chengyuan Liu , Huan Wang , Caihong Zhu , Li Ni , Bin Li , Huilin Yang
{"title":"An “EVs-in-ECM” mimicking system orchestrates transcription and translation of RUNX1 for in-situ cartilage regeneration","authors":"Qi Cheng ,&nbsp;Qianping Guo ,&nbsp;Xiaoyu Zhang ,&nbsp;Yuanchen Zhu ,&nbsp;Chengyuan Liu ,&nbsp;Huan Wang ,&nbsp;Caihong Zhu ,&nbsp;Li Ni ,&nbsp;Bin Li ,&nbsp;Huilin Yang","doi":"10.1016/j.mtbio.2025.101569","DOIUrl":null,"url":null,"abstract":"<div><div>The self-repair ability of articular cartilage is limited, which is one of the most difficult diseases to treat clinically. Kartogenin (KGN) induces chondrogenesis by regulating RUNX1 mRNA translation and the small molecule compound TD-198946 (TD) promotes chondrogenic differentiation of mesenchymal stem cells (MSCs) through increasing the transcription of RUNX1 mRNA. GelMA hydrogel and liposomes are respectively similar to the extracellular matrix (ECM) and extracellular vesicles (EVs). So, we developed an “EVs-in-ECM” mimicking system by incorporating GelMA and KGN/TD-loaded liposomes to investigate the repair effects of cartilage defect. First, western-blot, RNA fluorescence in situ hybridization (FISH), cellular immuno-fluorescence, co-immuno-precipitation (CO-IP), and qRT-PCR techniques showed that KGN regulated RUNX1 mRNA expression, and then promote chondrogenic differentiation of MSCs. Second, the role of RUNX1 was amplified by orchestrating RUNX1 transcription and translation through TD-198946 (TD) and KGN respectively, and the synergistic effects of TD and KGN on chondrogenesis of MSCs in vitro were discovered. Finally, an “EVs-in-ECM” mimicking system was designed for in situ cartilage repair. When GelMA loaded with KGN and TD liposomes, the hydrogel (KGN + TD@ GelMA) showed biological functions by the continuously controlled release of KGN and TD while maintaining its porous structure and mechanical strength, which enhanced the chondrogenesis of MSCs in one system. The repair performance of “EVs-in-ECM” in vivo was assessed using the articular osteochondral defect model of rat. The implantation of KGN + TD@ GelMA hydrogels effectively exerted favorable osteochondral repair effects showing structures similar to the native tissue, and prevented chondrocyte hypertrophy. The study indicate that the “EVs-in-ECM” mimicking system can act as a highly efficient and potent scaffold for osteochondral defect regeneration.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"31 ","pages":"Article 101569"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425001279","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The self-repair ability of articular cartilage is limited, which is one of the most difficult diseases to treat clinically. Kartogenin (KGN) induces chondrogenesis by regulating RUNX1 mRNA translation and the small molecule compound TD-198946 (TD) promotes chondrogenic differentiation of mesenchymal stem cells (MSCs) through increasing the transcription of RUNX1 mRNA. GelMA hydrogel and liposomes are respectively similar to the extracellular matrix (ECM) and extracellular vesicles (EVs). So, we developed an “EVs-in-ECM” mimicking system by incorporating GelMA and KGN/TD-loaded liposomes to investigate the repair effects of cartilage defect. First, western-blot, RNA fluorescence in situ hybridization (FISH), cellular immuno-fluorescence, co-immuno-precipitation (CO-IP), and qRT-PCR techniques showed that KGN regulated RUNX1 mRNA expression, and then promote chondrogenic differentiation of MSCs. Second, the role of RUNX1 was amplified by orchestrating RUNX1 transcription and translation through TD-198946 (TD) and KGN respectively, and the synergistic effects of TD and KGN on chondrogenesis of MSCs in vitro were discovered. Finally, an “EVs-in-ECM” mimicking system was designed for in situ cartilage repair. When GelMA loaded with KGN and TD liposomes, the hydrogel (KGN + TD@ GelMA) showed biological functions by the continuously controlled release of KGN and TD while maintaining its porous structure and mechanical strength, which enhanced the chondrogenesis of MSCs in one system. The repair performance of “EVs-in-ECM” in vivo was assessed using the articular osteochondral defect model of rat. The implantation of KGN + TD@ GelMA hydrogels effectively exerted favorable osteochondral repair effects showing structures similar to the native tissue, and prevented chondrocyte hypertrophy. The study indicate that the “EVs-in-ECM” mimicking system can act as a highly efficient and potent scaffold for osteochondral defect regeneration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
Thermo-sensitive ε-polylysine-heparin-poloxamer hydrogel-encapsulated BMSCs promote endometrial regeneration PLGA/HA sustained-release system loaded with liraglutide for the treatment of diabetic periodontitis through inhibition of necroptosis Innovative 3D-printed porous tantalum cage with non-window design to accelerate spinal fusion: A proof-of-concept study An in vitro model for cardiac organoid production: The combined role of geometrical confinement and substrate stiffness An “EVs-in-ECM” mimicking system orchestrates transcription and translation of RUNX1 for in-situ cartilage regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1