Thermo-sensitive ε-polylysine-heparin-poloxamer hydrogel-encapsulated BMSCs promote endometrial regeneration

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2025-02-15 DOI:10.1016/j.mtbio.2025.101580
Ruifang Han , Haiyi Zhou , Xingshan Liang , Siyi He , Xiaoming Sun , Yongge Guan , Yang Song
{"title":"Thermo-sensitive ε-polylysine-heparin-poloxamer hydrogel-encapsulated BMSCs promote endometrial regeneration","authors":"Ruifang Han ,&nbsp;Haiyi Zhou ,&nbsp;Xingshan Liang ,&nbsp;Siyi He ,&nbsp;Xiaoming Sun ,&nbsp;Yongge Guan ,&nbsp;Yang Song","doi":"10.1016/j.mtbio.2025.101580","DOIUrl":null,"url":null,"abstract":"<div><div>Endometrium plays a key role in embryo implantation and maintenance of pregnancy. However, to repair endometrial injury is still a challenge. In recent years, hydrogel materials have been widely used as effective support matrices to prevent intrauterine adhesions after endometrial injury. They can also be used as preparation scaffolds for encapsulating MSCs and certain therapeutic drugs. This study aimed to develop a preparation scaffold with high tissue affinity, high viscoelasticity and controlled release for repair of endometrial injury. The scaffold utilized heparin poloxamer (HP) as the matrix material and ε-polylysine (EPL) as the functional excipient to prepare a hydrogel that is suitable for endometrial adhesion and further encapsulate BMSCs. Furthermore, a strategy of the thermo-sensitive EPL-HP hydrogel-encapsulated BMSCs were used for better homing of BMSC after transplantation into the rat endometrial injury model, so as to exert the potential of endometrial regeneration by activating Nrf2 to regulate SDF-1/CXCR4 axis.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"31 ","pages":"Article 101580"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425001383","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrium plays a key role in embryo implantation and maintenance of pregnancy. However, to repair endometrial injury is still a challenge. In recent years, hydrogel materials have been widely used as effective support matrices to prevent intrauterine adhesions after endometrial injury. They can also be used as preparation scaffolds for encapsulating MSCs and certain therapeutic drugs. This study aimed to develop a preparation scaffold with high tissue affinity, high viscoelasticity and controlled release for repair of endometrial injury. The scaffold utilized heparin poloxamer (HP) as the matrix material and ε-polylysine (EPL) as the functional excipient to prepare a hydrogel that is suitable for endometrial adhesion and further encapsulate BMSCs. Furthermore, a strategy of the thermo-sensitive EPL-HP hydrogel-encapsulated BMSCs were used for better homing of BMSC after transplantation into the rat endometrial injury model, so as to exert the potential of endometrial regeneration by activating Nrf2 to regulate SDF-1/CXCR4 axis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热敏性ε-聚天冬酰胺-聚羟基乙酰胺水凝胶包裹的 BMSCs 可促进子宫内膜再生
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
Thermo-sensitive ε-polylysine-heparin-poloxamer hydrogel-encapsulated BMSCs promote endometrial regeneration PLGA/HA sustained-release system loaded with liraglutide for the treatment of diabetic periodontitis through inhibition of necroptosis Innovative 3D-printed porous tantalum cage with non-window design to accelerate spinal fusion: A proof-of-concept study An in vitro model for cardiac organoid production: The combined role of geometrical confinement and substrate stiffness An “EVs-in-ECM” mimicking system orchestrates transcription and translation of RUNX1 for in-situ cartilage regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1