Investigating the mechanical and fracture behaviour of Ti-based nanocomposites reinforced with single and bi-crystalline hBN nanosheets

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-10-09 DOI:10.1016/j.matchemphys.2024.130017
Jashveer Singh , Rajesh Kumar , Rakesh Sehgal
{"title":"Investigating the mechanical and fracture behaviour of Ti-based nanocomposites reinforced with single and bi-crystalline hBN nanosheets","authors":"Jashveer Singh ,&nbsp;Rajesh Kumar ,&nbsp;Rakesh Sehgal","doi":"10.1016/j.matchemphys.2024.130017","DOIUrl":null,"url":null,"abstract":"<div><div>The design and manufacturing of graphene and hBN-based nanocomposites is taking the era of material design to new horizons. The present article employs MD simulations to investigate the mechanical, fracture, and interfacial behaviour of the Ti-based nanocomposites reinforced with pristine as well as defective single and bi-crystalline hBN nanosheets. The nanocomposites exhibited over ∼100 % improvements in the failure strengths as compared to pristine Ti matrices. Reinforcement of the Ti matrices with single and bi-crystalline hBN nanosheets improved the failure strengths of the nanocomposites from 4.06 GPa to 9.74 GPa and 9.80 GPa, respectively. However, an increase in vacancy defect (Single or Di-vacancy) concentration (0–6%) resulted in a successive reduction of the failure strength of the nanocomposites. Moreover, the deformation mechanisms in Ti matrices reinforced with pristine and defective nanosheets were observed to be governed by {<span><math><mrow><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow></math></span>} &lt; <span><math><mrow><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mover><mn>2</mn><mo>‾</mo></mover></mrow></math></span> &gt; compression twin and <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mn>0</mn></mrow><mo>}</mo></mrow></math></span> &lt; <span><math><mrow><mn>11</mn><mover><mn>2</mn><mo>‾</mo></mover><mn>0</mn></mrow></math></span> &gt; prismatic slip dislocations, respectively. Furthermore, the pull-out and pull-up velocities models of interfacial shear and cohesive strengths, respectively, were employed to confirm the observed results.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"328 ","pages":"Article 130017"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011453","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The design and manufacturing of graphene and hBN-based nanocomposites is taking the era of material design to new horizons. The present article employs MD simulations to investigate the mechanical, fracture, and interfacial behaviour of the Ti-based nanocomposites reinforced with pristine as well as defective single and bi-crystalline hBN nanosheets. The nanocomposites exhibited over ∼100 % improvements in the failure strengths as compared to pristine Ti matrices. Reinforcement of the Ti matrices with single and bi-crystalline hBN nanosheets improved the failure strengths of the nanocomposites from 4.06 GPa to 9.74 GPa and 9.80 GPa, respectively. However, an increase in vacancy defect (Single or Di-vacancy) concentration (0–6%) resulted in a successive reduction of the failure strength of the nanocomposites. Moreover, the deformation mechanisms in Ti matrices reinforced with pristine and defective nanosheets were observed to be governed by {1011} < 1012 > compression twin and {1010} < 1120 > prismatic slip dislocations, respectively. Furthermore, the pull-out and pull-up velocities models of interfacial shear and cohesive strengths, respectively, were employed to confirm the observed results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究用单晶和双晶 hBN 纳米片增强的钛基纳米复合材料的机械性能和断裂性能
石墨烯和氢溴萘基纳米复合材料的设计与制造正在将材料设计时代推向新的境界。本文利用 MD 模拟研究了用原始以及缺陷单晶和双晶 hBN 纳米片增强的钛基纳米复合材料的机械、断裂和界面行为。与原始钛基材料相比,纳米复合材料的破坏强度提高了 ∼ 100%。用单晶和双晶 hBN 纳米片增强钛基体可将纳米复合材料的破坏强度分别从 4.06 GPa 提高到 9.74 GPa 和 9.80 GPa。然而,空位缺陷(单空位或双空位)浓度(0-6%)的增加会导致纳米复合材料失效强度的连续降低。此外,用原始纳米片和缺陷纳米片增强的钛基体的变形机制分别受{101‾1} < 101‾2‾ >压缩孪晶和{101‾0} < 112‾0 >棱柱滑移位错的支配。此外,还分别采用了界面剪切强度和内聚强度的拉出速度和拉升速度模型来证实观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction Influence of core fluorination on the phase properties of fan-like azobenzene based supramolecules, their cis-trans photoisomerization and photoluminescence dynamics Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics Synthesis and application of Ho³⁺ doped BaGd₂ZnO₅ nanophosphors for enhanced latent fingerprint development and poroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1