{"title":"Solar-thermal conversion of biomass: Principles of solar concentrators/reactors, reported studies, and prospects for large-scale implementation","authors":"Yassir Makkawi, Mihad Ibrahim, Nihal Yasir, Omar Moussa","doi":"10.1016/j.fuproc.2024.108139","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-thermal biomass conversion using both direct and indirect concentrated solar thermal energy is an emerging approach that combines two renewable energy sources to enhance energy efficiency and enable sustainable processing. This review paper provides a comprehensive examination of various types of solar concentrators and reactors, showcasing the diversity of available technologies and their roles in enhancing conversion efficiency. The paper focuses on the reported studies on biomass solar-thermal conversion through gasification and pyrolysis processes, critically discussing the integrated process operating conditions and the quality of the products (biofuels). These analyses affirm the technical viability, emphasizing the relatively low energy investment required for pyrolysis compared to the total energy output from biomass feedstock. This points to the substantial promise of solar thermal biomass conversion as a sustainable and efficient renewable energy solution. The conclusion highlights the importance of ongoing research, technological advancements, and policy support to fully realize the potential of solar-thermal conversion of biomass.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108139"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001097","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-thermal biomass conversion using both direct and indirect concentrated solar thermal energy is an emerging approach that combines two renewable energy sources to enhance energy efficiency and enable sustainable processing. This review paper provides a comprehensive examination of various types of solar concentrators and reactors, showcasing the diversity of available technologies and their roles in enhancing conversion efficiency. The paper focuses on the reported studies on biomass solar-thermal conversion through gasification and pyrolysis processes, critically discussing the integrated process operating conditions and the quality of the products (biofuels). These analyses affirm the technical viability, emphasizing the relatively low energy investment required for pyrolysis compared to the total energy output from biomass feedstock. This points to the substantial promise of solar thermal biomass conversion as a sustainable and efficient renewable energy solution. The conclusion highlights the importance of ongoing research, technological advancements, and policy support to fully realize the potential of solar-thermal conversion of biomass.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.