Solar-thermal conversion of biomass: Principles of solar concentrators/reactors, reported studies, and prospects for large-scale implementation

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Fuel Processing Technology Pub Date : 2024-10-01 DOI:10.1016/j.fuproc.2024.108139
Yassir Makkawi, Mihad Ibrahim, Nihal Yasir, Omar Moussa
{"title":"Solar-thermal conversion of biomass: Principles of solar concentrators/reactors, reported studies, and prospects for large-scale implementation","authors":"Yassir Makkawi,&nbsp;Mihad Ibrahim,&nbsp;Nihal Yasir,&nbsp;Omar Moussa","doi":"10.1016/j.fuproc.2024.108139","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-thermal biomass conversion using both direct and indirect concentrated solar thermal energy is an emerging approach that combines two renewable energy sources to enhance energy efficiency and enable sustainable processing. This review paper provides a comprehensive examination of various types of solar concentrators and reactors, showcasing the diversity of available technologies and their roles in enhancing conversion efficiency. The paper focuses on the reported studies on biomass solar-thermal conversion through gasification and pyrolysis processes, critically discussing the integrated process operating conditions and the quality of the products (biofuels). These analyses affirm the technical viability, emphasizing the relatively low energy investment required for pyrolysis compared to the total energy output from biomass feedstock. This points to the substantial promise of solar thermal biomass conversion as a sustainable and efficient renewable energy solution. The conclusion highlights the importance of ongoing research, technological advancements, and policy support to fully realize the potential of solar-thermal conversion of biomass.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108139"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001097","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-thermal biomass conversion using both direct and indirect concentrated solar thermal energy is an emerging approach that combines two renewable energy sources to enhance energy efficiency and enable sustainable processing. This review paper provides a comprehensive examination of various types of solar concentrators and reactors, showcasing the diversity of available technologies and their roles in enhancing conversion efficiency. The paper focuses on the reported studies on biomass solar-thermal conversion through gasification and pyrolysis processes, critically discussing the integrated process operating conditions and the quality of the products (biofuels). These analyses affirm the technical viability, emphasizing the relatively low energy investment required for pyrolysis compared to the total energy output from biomass feedstock. This points to the substantial promise of solar thermal biomass conversion as a sustainable and efficient renewable energy solution. The conclusion highlights the importance of ongoing research, technological advancements, and policy support to fully realize the potential of solar-thermal conversion of biomass.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物质的太阳热能转换:太阳能聚光器/反应器的原理、已报告的研究和大规模实施的前景
利用直接和间接聚光太阳热能进行光热生物质转换是一种新兴的方法,它结合了两种可再生能源,以提高能源效率并实现可持续加工。本综述论文全面考察了各种类型的太阳能聚光器和反应器,展示了现有技术的多样性及其在提高转换效率方面的作用。论文重点介绍了通过气化和热解过程进行生物质太阳能-热转换的研究报告,对综合过程操作条件和产品(生物燃料)质量进行了严格讨论。这些分析肯定了技术可行性,强调与生物质原料的总能源产出相比,热解所需的能源投资相对较低。这表明太阳能热生物质转换作为一种可持续和高效的可再生能源解决方案大有可为。结论强调了持续研究、技术进步和政策支持对于充分实现生物质太阳能热转换潜力的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
期刊最新文献
Microstructure modulation of hard carbon derived from long-flame coal to improve electrochemical sodium storage performances Data-driven analysis in the selective oligomerization of long-chain linear alpha olefin on zeolite catalysts: A machine learning-based parameter study Experimental study and characterisation of a novel two stage bubbling fluidised bed gasification process utilising municipal waste wood Intelligent control system and operational performance optimization of a municipal solid waste incineration power plant Comparative study on combustion and emission characteristics of methanol/gasoline blend fueled DISI engine under different stratified lean burn modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1