Anticancer Potential of Ethanolic Extract of Xylopia aethiopica (Dunal) A. Rich (Annonaceae) Dried Fruits on Breast Adenocarcinoma: In Vitro and In Vivo Evidences.
{"title":"Anticancer Potential of Ethanolic Extract of Xylopia aethiopica (Dunal) A. Rich (Annonaceae) Dried Fruits on Breast Adenocarcinoma: In Vitro and In Vivo Evidences.","authors":"Merline Ymele Nguedia,Roland Nhouma Rebe,Berlise Yengwa Bakam,Dieudonné Njamen,Joseph Marie Nkodo Mendimi,Stéphane Zingue","doi":"10.1002/tox.24428","DOIUrl":null,"url":null,"abstract":"Breast cancer incidence and mortality rate in Cameroonian women is incredibly high, thus there is need for more effective therapy. Xylopia aethiopica dry fruits are traditionally used for both nutritional and medicinal purposes, including the management of diverse ailments such as cancer. This study evaluated the in vitro and in vivo anti-mammary cancer potential of X. aethiopica. The cytotoxic activity of the ethanolic extract of X. aethiopica dry fruits was assessed at different concentrations against MDA-MB 231 and MCF-7 cells using the MTT assay. Additionally, clone formation, apoptosis/necrosis, cell adhesion, cell migration, and chemotaxis were examined. Furthermore, the chemo-preventive potential of X. aethiopica dry fruit extract (XAE) was evaluated on breast tumors induced by DMBA in 42 female rats of age 45-55 days (~80 g). The normal (NOR) and negative (DMBA) control groups were daily treated with the vehicle, while the positive (Tamox) and test (XAE) groups were administered tamoxifen (3.3 mg/kg) and X. aethiopica extract (75, 150, and 300 mg/kg BW), respectively for 20 weeks. Parameters such as tumor volume and burden, tumor incidence, CA 15-3 serum level, inflammatory status, antioxidant and histopathology were evaluated. X. aethiopica significantly (p < 0.05) decreased ER+ (MCF-7) and ER- (MDA-MB 231) breast adenocarcinoma cell growth from 12.5 to 100 μg/mL after 72 h. At the 100 μg/mL concentration, clone formation, cell proliferation, and migration were notably decreased in MDA-MB 231 cells after 48 h, while there was an observed rise in cell adhesion to the collagen extracellular matrix. Additionally, there was a rise in apoptotic cell count (p < 0.01) and caspase-3 activity (p < 0.05) observed in MDA-MB 231 cells following exposure to XAE at 100 μg/mL. XAE, across all tested doses, demonstrated significant reductions in tumor incidence, burden, and volume, akin to tamoxifen, compared to untreated rats (DMBA). Furthermore, there was an elevation in antioxidants (SOD, CAT, and GSH) and a decrease in pro-inflammatory cytokines (INF-γ, TNF-α, IL-12, and IL-6) observed at all tested doses. Overall, X. aethiopica dry fruit displays anticancer potential through caspase-3-dependent apoptosis pathways, alongside antioxidant and anti-inflammatory activities.","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/tox.24428","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer incidence and mortality rate in Cameroonian women is incredibly high, thus there is need for more effective therapy. Xylopia aethiopica dry fruits are traditionally used for both nutritional and medicinal purposes, including the management of diverse ailments such as cancer. This study evaluated the in vitro and in vivo anti-mammary cancer potential of X. aethiopica. The cytotoxic activity of the ethanolic extract of X. aethiopica dry fruits was assessed at different concentrations against MDA-MB 231 and MCF-7 cells using the MTT assay. Additionally, clone formation, apoptosis/necrosis, cell adhesion, cell migration, and chemotaxis were examined. Furthermore, the chemo-preventive potential of X. aethiopica dry fruit extract (XAE) was evaluated on breast tumors induced by DMBA in 42 female rats of age 45-55 days (~80 g). The normal (NOR) and negative (DMBA) control groups were daily treated with the vehicle, while the positive (Tamox) and test (XAE) groups were administered tamoxifen (3.3 mg/kg) and X. aethiopica extract (75, 150, and 300 mg/kg BW), respectively for 20 weeks. Parameters such as tumor volume and burden, tumor incidence, CA 15-3 serum level, inflammatory status, antioxidant and histopathology were evaluated. X. aethiopica significantly (p < 0.05) decreased ER+ (MCF-7) and ER- (MDA-MB 231) breast adenocarcinoma cell growth from 12.5 to 100 μg/mL after 72 h. At the 100 μg/mL concentration, clone formation, cell proliferation, and migration were notably decreased in MDA-MB 231 cells after 48 h, while there was an observed rise in cell adhesion to the collagen extracellular matrix. Additionally, there was a rise in apoptotic cell count (p < 0.01) and caspase-3 activity (p < 0.05) observed in MDA-MB 231 cells following exposure to XAE at 100 μg/mL. XAE, across all tested doses, demonstrated significant reductions in tumor incidence, burden, and volume, akin to tamoxifen, compared to untreated rats (DMBA). Furthermore, there was an elevation in antioxidants (SOD, CAT, and GSH) and a decrease in pro-inflammatory cytokines (INF-γ, TNF-α, IL-12, and IL-6) observed at all tested doses. Overall, X. aethiopica dry fruit displays anticancer potential through caspase-3-dependent apoptosis pathways, alongside antioxidant and anti-inflammatory activities.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.