In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-16 DOI:10.1002/adma.202411725
Bin Wang, Lu Wang, Beining Guo, Yueyue Kong, Fengbo Wang, Zhongxin Jing, Guangmeng Qu, Muhammad Mamoor, Dedong Wang, Xiyu He, Lingtong Kong, Liqiang Xu
{"title":"In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries","authors":"Bin Wang, Lu Wang, Beining Guo, Yueyue Kong, Fengbo Wang, Zhongxin Jing, Guangmeng Qu, Muhammad Mamoor, Dedong Wang, Xiyu He, Lingtong Kong, Liqiang Xu","doi":"10.1002/adma.202411725","DOIUrl":null,"url":null,"abstract":"Room temperature sodium-sulfur batteries (RT Na-S) have garnered significant attention for their high energy density and cost-effectiveness, positioning them as a promising alternative to lithium-ion batteries. However, they encounter challenges such as the dissolution of sodium polysulfides and sluggish kinetics. Introducing high-activity electrocatalysts and enhancing the density of active sites represents an efficient strategy to enhance reaction kinetics. Here, an amorphous Ni-B material that undergoes electrochemical evolution to generate the NiS<sub>x</sub> phase within an operational sodium-sulfur battery, contrasting with the crystalline NiB counterpart is fabricated. Electrochemical cycling facilitated the establishment of an interface between the amorphous Ni-B and NiS<sub>x</sub>, leading to heightened catalytic activity and improved reaction kinetics. Consequently, batteries utilizing the amorphous Ni-B showcased a notable initial specific capacity of 1487 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>, exhibiting exceptional performance under high current densities of 5 A g<sup>−1</sup>, in low-temperature conditions (−10 °C), with high sulfur loading, and in pouch cell configurations.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411725","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Room temperature sodium-sulfur batteries (RT Na-S) have garnered significant attention for their high energy density and cost-effectiveness, positioning them as a promising alternative to lithium-ion batteries. However, they encounter challenges such as the dissolution of sodium polysulfides and sluggish kinetics. Introducing high-activity electrocatalysts and enhancing the density of active sites represents an efficient strategy to enhance reaction kinetics. Here, an amorphous Ni-B material that undergoes electrochemical evolution to generate the NiSx phase within an operational sodium-sulfur battery, contrasting with the crystalline NiB counterpart is fabricated. Electrochemical cycling facilitated the establishment of an interface between the amorphous Ni-B and NiSx, leading to heightened catalytic activity and improved reaction kinetics. Consequently, batteries utilizing the amorphous Ni-B showcased a notable initial specific capacity of 1487 mAh g−1 at 0.2 A g−1, exhibiting exceptional performance under high current densities of 5 A g−1, in low-temperature conditions (−10 °C), with high sulfur loading, and in pouch cell configurations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非晶态金属硼化物的原位电化学演化助力室温/亚零度钠硫电池的长周期循环
室温钠硫电池(RT Na-S)因其高能量密度和成本效益而备受关注,被定位为锂离子电池的理想替代品。然而,它们也遇到了诸如多硫化钠溶解和动力学缓慢等挑战。引入高活性电催化剂并提高活性位点密度是增强反应动力学的有效策略。在这里,我们制作了一种无定形镍-B 材料,这种材料在钠-硫电池中经过电化学演化生成镍-Sx 相,与结晶镍-B 材料形成鲜明对比。电化学循环有助于在非晶态镍-B 和镍-氧化物之间建立界面,从而提高催化活性并改善反应动力学。因此,使用非晶镍-B 的电池在 0.2 A g-1 的条件下显示出 1487 mAh g-1 的显著初始比容量,在 5 A g-1 的高电流密度、低温条件(-10 °C)、高硫负荷和袋式电池配置下表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries Triggering Asymmetric Layer Displacement Polarization and Redox Dual-Sites Activation by Inside-Out Anion Substitution for Efficient CO2 Photoreduction Peripheral Substitution Engineering of MR-TADF Emitters Embedded With B‒N Covalent Bond Towards Efficient BT.2020 Blue Electroluminescence Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance: A Unified View of Electrolyte Gated Organic Transistors Responsive Magnetic Particle Imaging Tracer: Overcoming “Always-On” Limitation, Eliminating Interference, and Ensuring Safety in Adaptive Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1