Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance: A Unified View of Electrolyte Gated Organic Transistors

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-15 DOI:10.1002/adma.202410940
Rian Zanotti, Matteo Sensi, Marcello Berto, Alessandro Paradisi, Michele Bianchi, Pierpaolo Greco, Carlo Augusto Bortolotti, Michele Di Lauro, Fabio Biscarini
{"title":"Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance: A Unified View of Electrolyte Gated Organic Transistors","authors":"Rian Zanotti, Matteo Sensi, Marcello Berto, Alessandro Paradisi, Michele Bianchi, Pierpaolo Greco, Carlo Augusto Bortolotti, Michele Di Lauro, Fabio Biscarini","doi":"10.1002/adma.202410940","DOIUrl":null,"url":null,"abstract":"A framework for electrolyte-gated organic transistors (EGOTs) that unifies the view of interfacial capacitive coupling of electrolyte-gated organic field-effect transistors (EGOFETs) with the volumetric capacitive coupling in organic electrochemical transistors (OECTs) is proposed. The EGOT effective capacitance arises from in-series capacitances of the electrolyte/gate electrode and electrolyte/channel interfaces, and the chemical capacitance of the organic semiconductor channel whose weight with respect to the interfacial capacitance is modulated by the charge carrier density, hence by the gate voltage. The expression for chemical capacitance is derived from the DOS of the organic semiconductor, which it is assumed to exhibit exponential energy disorder in the HOMO-LUMO gap. The analytical expression of the EGOT current is assessed on experimental data and shown to accurately predict the shape of the whole transfer curve of an EGOT thus allowing to extract accurate values for the switch-on voltage and the interfacial transconductance, without assumptions on specific response regime and, in OECT, without invoking the volumetric capacitance. Interestingly, the EGOT model recovers EGOFET and OECT as limit cases and, in the latter case, explicitly represents the volumetric capacitance in terms of the energy disorder and the bandgap of the organic semiconductor.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410940","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A framework for electrolyte-gated organic transistors (EGOTs) that unifies the view of interfacial capacitive coupling of electrolyte-gated organic field-effect transistors (EGOFETs) with the volumetric capacitive coupling in organic electrochemical transistors (OECTs) is proposed. The EGOT effective capacitance arises from in-series capacitances of the electrolyte/gate electrode and electrolyte/channel interfaces, and the chemical capacitance of the organic semiconductor channel whose weight with respect to the interfacial capacitance is modulated by the charge carrier density, hence by the gate voltage. The expression for chemical capacitance is derived from the DOS of the organic semiconductor, which it is assumed to exhibit exponential energy disorder in the HOMO-LUMO gap. The analytical expression of the EGOT current is assessed on experimental data and shown to accurately predict the shape of the whole transfer curve of an EGOT thus allowing to extract accurate values for the switch-on voltage and the interfacial transconductance, without assumptions on specific response regime and, in OECT, without invoking the volumetric capacitance. Interestingly, the EGOT model recovers EGOFET and OECT as limit cases and, in the latter case, explicitly represents the volumetric capacitance in terms of the energy disorder and the bandgap of the organic semiconductor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机半导体中的电荷载流子密度调节有效电容:电解质门控有机晶体管的统一观点
本文提出了一个电解质门控有机晶体管(EGOT)框架,它将电解质门控有机场效应晶体管(EGOFET)的界面电容耦合与有机电化学晶体管(OECT)的体积电容耦合统一起来。EGOT 的有效电容来自电解质/栅电极和电解质/沟道界面的串联电容,以及有机半导体沟道的化学电容,其相对于界面电容的权重受电荷载流子密度的影响,因此也受栅电压的影响。化学电容的表达式来自有机半导体的 DOS,假设有机半导体在 HOMO-LUMO 间隙中表现出指数能量无序。实验数据对 EGOT 电流的分析表达式进行了评估,结果表明该表达式能准确预测 EGOT 整个传输曲线的形状,因此可以提取开关电压和界面跨导的准确值,而无需假设特定的响应机制,在 OECT 中也无需引用体积电容。有趣的是,EGOT 模型将 EGOFET 和 OECT 恢复为极限情况,并且在后一种情况中,根据有机半导体的能量无序和带隙明确表示了体积电容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries Triggering Asymmetric Layer Displacement Polarization and Redox Dual-Sites Activation by Inside-Out Anion Substitution for Efficient CO2 Photoreduction Peripheral Substitution Engineering of MR-TADF Emitters Embedded With B‒N Covalent Bond Towards Efficient BT.2020 Blue Electroluminescence Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance: A Unified View of Electrolyte Gated Organic Transistors Responsive Magnetic Particle Imaging Tracer: Overcoming “Always-On” Limitation, Eliminating Interference, and Ensuring Safety in Adaptive Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1