Jingjie Wei , Cristian Cojocaru , Maniya Aghasibeig , Chenwei Shao , Zehua Li , Jiahui Zhang , Eric Irissou , Yu Zou
{"title":"Deposition, microstructure and hardness of AlCoCrFeNi2.1 eutectic high entropy alloy coatings by cold spray, HVOF, and plasma spray","authors":"Jingjie Wei , Cristian Cojocaru , Maniya Aghasibeig , Chenwei Shao , Zehua Li , Jiahui Zhang , Eric Irissou , Yu Zou","doi":"10.1016/j.surfcoat.2024.131442","DOIUrl":null,"url":null,"abstract":"<div><div>Eutectic high entropy alloys (EHEAs) are reported to exhibit excellent mechanical properties which are useful for coating applications. In this study, we have produced AlCoCrFeNi<sub>2.1</sub> EHEA coatings using the cold spray, high velocity oxygen-fuel (HVOF), and plasma spray techniques and compared their bonding characteristics, microstructure and hardness. We observe body-centered cubic (bcc) to face-centered cubic (fcc) phase transformations in all the types of coatings. The high processing temperatures in HVOF and plasma sprays lead to the segregation and depletion of Al from Ni-and Al-rich bcc/B2 regions and form Al<sub>2</sub>O<sub>3</sub>. In the cold sprayed coatings, we observe that a fraction of lamellar microstructure is preserved after cold spraying. Regarding the hardness, the cold sprayed coatings exhibit hardness in the range of 440–498 HV due to high work hardening and low oxygen content below 4 at.%; the HVOF coatings show the hardness in the range of 380–556 HV due to the effects of oxide dispersion strengthening with 13–28 at.% oxygen; The plasma sprayed coatings exhibit the hardness in the range 208–258 HV and 6.1–13.4 at.% oxygen. This study demonstrates the feasibility to produce thick and dense EHEA coatings using the above spray techniques, and the cold sprayed coatings exhibit relatively high hardness and low oxygen levels.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131442"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224010739","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Eutectic high entropy alloys (EHEAs) are reported to exhibit excellent mechanical properties which are useful for coating applications. In this study, we have produced AlCoCrFeNi2.1 EHEA coatings using the cold spray, high velocity oxygen-fuel (HVOF), and plasma spray techniques and compared their bonding characteristics, microstructure and hardness. We observe body-centered cubic (bcc) to face-centered cubic (fcc) phase transformations in all the types of coatings. The high processing temperatures in HVOF and plasma sprays lead to the segregation and depletion of Al from Ni-and Al-rich bcc/B2 regions and form Al2O3. In the cold sprayed coatings, we observe that a fraction of lamellar microstructure is preserved after cold spraying. Regarding the hardness, the cold sprayed coatings exhibit hardness in the range of 440–498 HV due to high work hardening and low oxygen content below 4 at.%; the HVOF coatings show the hardness in the range of 380–556 HV due to the effects of oxide dispersion strengthening with 13–28 at.% oxygen; The plasma sprayed coatings exhibit the hardness in the range 208–258 HV and 6.1–13.4 at.% oxygen. This study demonstrates the feasibility to produce thick and dense EHEA coatings using the above spray techniques, and the cold sprayed coatings exhibit relatively high hardness and low oxygen levels.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.