Notch induces transcription by stimulating release of paused RNA polymerase II

IF 7.5 1区 生物学 Q1 CELL BIOLOGY Genes & development Pub Date : 2024-10-16 DOI:10.1101/gad.352108.124
Julia M. Rogers, Claudia A. Mimoso, Benjamin J.E. Martin, Alexandre P. Martin, Jon C. Aster, Karen Adelman, Stephen C. Blacklow
{"title":"Notch induces transcription by stimulating release of paused RNA polymerase II","authors":"Julia M. Rogers, Claudia A. Mimoso, Benjamin J.E. Martin, Alexandre P. Martin, Jon C. Aster, Karen Adelman, Stephen C. Blacklow","doi":"10.1101/gad.352108.124","DOIUrl":null,"url":null,"abstract":"Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examine the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"30 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352108.124","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examine the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Notch 通过刺激释放暂停的 RNA 聚合酶 II 来诱导转录
Notch 蛋白在配体诱导下发生蛋白水解,释放出一种核效应物,通过调节转录影响多种细胞过程。然而,尽管经过多年的研究,Notch 如何诱导其靶基因的转录仍不清楚。在这里,我们利用染色质可及性和新生 RNA 生成的高分辨率基因组检测方法,全面研究了人类 Notch1 在整个激活过程中的反应。我们的数据显示,Notch 主要通过释放暂停的 RNA 聚合酶 II(RNAPII)来诱导靶基因转录。此外,与普遍认为 Notch 通过促进染色质可及性发挥作用的模型不同,我们发现在 Notch 信号诱导之前,开放染色质已通过 SWI/SNF 介导的重塑在 Notch 响应调控元件上建立起来。这些研究共同表明,核对 Notch 信号的反应是由信号激活时预先存在的染色质状态和 RNAPII 分布决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes & development
Genes & development 生物-发育生物学
CiteScore
17.50
自引率
1.90%
发文量
71
审稿时长
3-6 weeks
期刊介绍: Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers. Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).
期刊最新文献
mTORC1, the maestro of cell metabolism and growth PROSER1 modulates DNA demethylation through dual mechanisms to prevent syndromic developmental malformations Evidence for dual roles of histone H3 lysine 4 in antagonizing Polycomb group function and promoting target gene expression Proteomic insights into circadian transcription regulation: novel E-box interactors revealed by proximity labeling BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1