Pub Date : 2024-05-17DOI: 10.3389/femat.2024.1396521
Alfred Zhao, Vincent M. Le Corre, Jason A. Röhr
Space-charge-limited current (SCLC) measurements are commonly employed to characterize charge-transport properties of semiconductors used in next-generation thin-film optoelectronics, such as organic π-conjugated small molecules and polymers, and metal-halide perovskites. Despite the wide-spread adoption of the method, there is no community-wide consensus around how SCLC measurements should be performed, nor how the data should be analyzed and reported. While it is common to report device characteristics by employing a simplistic analytical model for fitting a single J-V curve obtained from a solitary device at room temperature—sometimes in a very select voltage range—expectedly, such an approach will often not give an accurate picture of the underlying physics. On that account, we here aim to highlight the importance of reporting values extracted from not just a solitary single-carrier device measured at room temperature, but from devices with different thicknesses measured at varying device temperature. We also highlight how the choice of device thickness is especially critical in determining what device and material characteristics can be extracted from SCLC measurements, and how this choice can greatly affect the conclusions drawn about the probed semiconducting material. While other factors could affect the outcome of an SCLC measurement and the subsequent analysis, we hope that the topics covered in this article will result in overall improved charge-transport characterization of thin-film semiconductors and initiate a broader discussion into SCLC metrology at large.
{"title":"On the importance of varying device thickness and temperature on the outcome of space-charge-limited current measurements","authors":"Alfred Zhao, Vincent M. Le Corre, Jason A. Röhr","doi":"10.3389/femat.2024.1396521","DOIUrl":"https://doi.org/10.3389/femat.2024.1396521","url":null,"abstract":"Space-charge-limited current (SCLC) measurements are commonly employed to characterize charge-transport properties of semiconductors used in next-generation thin-film optoelectronics, such as organic π-conjugated small molecules and polymers, and metal-halide perovskites. Despite the wide-spread adoption of the method, there is no community-wide consensus around how SCLC measurements should be performed, nor how the data should be analyzed and reported. While it is common to report device characteristics by employing a simplistic analytical model for fitting a single J-V curve obtained from a solitary device at room temperature—sometimes in a very select voltage range—expectedly, such an approach will often not give an accurate picture of the underlying physics. On that account, we here aim to highlight the importance of reporting values extracted from not just a solitary single-carrier device measured at room temperature, but from devices with different thicknesses measured at varying device temperature. We also highlight how the choice of device thickness is especially critical in determining what device and material characteristics can be extracted from SCLC measurements, and how this choice can greatly affect the conclusions drawn about the probed semiconducting material. While other factors could affect the outcome of an SCLC measurement and the subsequent analysis, we hope that the topics covered in this article will result in overall improved charge-transport characterization of thin-film semiconductors and initiate a broader discussion into SCLC metrology at large.","PeriodicalId":479808,"journal":{"name":"Frontiers in electronic materials","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.3389/femat.2024.1392760
Na Hyun Jo, Elena Gati, Heike Pfau
Uniaxial stress has proven to be a powerful experimental tuning parameter for effectively controlling lattice, charge, orbital, and spin degrees of freedom in quantum materials. In addition, its ability to manipulate the symmetry of materials has garnered significant attention. Recent technical progress to combine uniaxial stress cells with quantum oscillation and angle-resolved photoemission techniques allowed to study the electronic structure as function of uniaxial stress. This review provides an overview on experimental advancements in methods and examines studies on diverse quantum materials, encompassing the semimetal WTe2, the unconventional superconductor Sr2RuO4, Fe-based superconductors, and topological materials.
{"title":"Uniaxial stress effect on the electronic structure of quantum materials","authors":"Na Hyun Jo, Elena Gati, Heike Pfau","doi":"10.3389/femat.2024.1392760","DOIUrl":"https://doi.org/10.3389/femat.2024.1392760","url":null,"abstract":"Uniaxial stress has proven to be a powerful experimental tuning parameter for effectively controlling lattice, charge, orbital, and spin degrees of freedom in quantum materials. In addition, its ability to manipulate the symmetry of materials has garnered significant attention. Recent technical progress to combine uniaxial stress cells with quantum oscillation and angle-resolved photoemission techniques allowed to study the electronic structure as function of uniaxial stress. This review provides an overview on experimental advancements in methods and examines studies on diverse quantum materials, encompassing the semimetal WTe2, the unconventional superconductor Sr2RuO4, Fe-based superconductors, and topological materials.","PeriodicalId":479808,"journal":{"name":"Frontiers in electronic materials","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141018392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.3389/femat.2024.1403513
Pashupati Dhakal, Tsuyoshi Tajima, Marc Wenskat
{"title":"Editorial: Progress on superconducting materials for SRF applications","authors":"Pashupati Dhakal, Tsuyoshi Tajima, Marc Wenskat","doi":"10.3389/femat.2024.1403513","DOIUrl":"https://doi.org/10.3389/femat.2024.1403513","url":null,"abstract":"","PeriodicalId":479808,"journal":{"name":"Frontiers in electronic materials","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140691568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.3389/femat.2024.1350447
Caxton Griffith Kibebe, Yue Liu
Neuromorphic computing is a promising paradigm for developing energy-efficient and high-performance artificial intelligence systems. The unique properties of lithium niobate-based (LiNbO3)-based memristors, such as low power consumption, non-volatility, and high-speed switching, make them ideal candidates for synaptic emulation in neuromorphic systems. This study investigates the potential of LiNbO3-based memristors to revolutionize neuromorphic computing by exploring their synaptic behavior and optimizing device parameters, as well as harnessing the potential of LiNbO3-based memristors to create efficient and high-performance neuromorphic computing systems. By realizing efficient and high-speed neural networks, this literature review aims to pave the way for innovative artificial intelligence systems capable of addressing complex real-world challenges. The results obtained from this investigation will be crucial for future researchers and engineers working on designing and implementing LiNbO3-based neuromorphic computing architectures.
{"title":"LiNbO3-based memristors for neuromorphic computing applications: a review","authors":"Caxton Griffith Kibebe, Yue Liu","doi":"10.3389/femat.2024.1350447","DOIUrl":"https://doi.org/10.3389/femat.2024.1350447","url":null,"abstract":"Neuromorphic computing is a promising paradigm for developing energy-efficient and high-performance artificial intelligence systems. The unique properties of lithium niobate-based (LiNbO3)-based memristors, such as low power consumption, non-volatility, and high-speed switching, make them ideal candidates for synaptic emulation in neuromorphic systems. This study investigates the potential of LiNbO3-based memristors to revolutionize neuromorphic computing by exploring their synaptic behavior and optimizing device parameters, as well as harnessing the potential of LiNbO3-based memristors to create efficient and high-performance neuromorphic computing systems. By realizing efficient and high-speed neural networks, this literature review aims to pave the way for innovative artificial intelligence systems capable of addressing complex real-world challenges. The results obtained from this investigation will be crucial for future researchers and engineers working on designing and implementing LiNbO3-based neuromorphic computing architectures.","PeriodicalId":479808,"journal":{"name":"Frontiers in electronic materials","volume":"84 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140254746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-08DOI: 10.3389/femat.2024.1339293
I. Parajuli, G. Ciovati, A. Gurevich
The performance of superconducting radio-frequency Nb cavities at high radio-frequency (rf) fields in the absence of field emission can be limited by either a sharp decrease of the quality factor Q0(Bp) above peak surface magnetic fields Bp ∼100 mT or by a quench. We have measured Q0(Bp) at 2 K of several 1.3 GHz single-cell Nb cavities with different grain sizes, and with different ambient magnetic fields and cooldown rates below the critical temperature. Temperature mapping and a novel magnetic field mapping systems were used to find the location of “hot-spots” and regions of trapped magnetic flux. The use of a variable input coupler allowed further exploring the dissipative state. The results showed a remarkable thermal stability in some cavities with up to 200 W of rf power dissipation at 2 K, whereas other cavities quenched at much lower rf power. We observed a narrow distributions of the onset fields of hot-spots which were not affected by thermal cycling or by conditions which favor the formation of Nb hydrides. Furthermore, a poor correlation was found between the location of hot-spots and trapped vortices. We suggest that the totality of our experimental data can be explained by a sharp increase of the residual surface resistance above 120–140 mT due to the field-induced breakdown of a proximity-coupled metallic suboxide layer at the surface.
在没有场发射的情况下,超导射频铌空穴在高射频(rf)场中的性能会受到以下两种情况的限制:一是在峰值表面磁场 Bp ∼100 mT 以上,品质因数 Q0(Bp) 急剧下降;二是出现淬火。我们测量了不同晶粒大小、不同环境磁场和低于临界温度的冷却率的多个 1.3 GHz 单细胞铌空穴在 2 K 时的 Q0(Bp)。温度测绘和新型磁场测绘系统被用来寻找 "热点 "的位置和被困磁通的区域。使用可变输入耦合器可以进一步探索耗散状态。结果表明,一些空腔在 2 K 下耗散高达 200 W 的射频功率时具有显著的热稳定性,而另一些空腔则在更低的射频功率下熄灭。我们观察到热点的起始场分布很窄,不受热循环或有利于铌氢化物形成的条件的影响。此外,我们还发现热点位置与被困涡旋之间的相关性很差。我们认为,我们的全部实验数据都可以用 120-140 mT 以上残余表面电阻的急剧增加来解释,这是由于表面的近耦合金属亚氧化物层在场效应的诱导下发生了击穿。
{"title":"Magneto-thermal limitations in superconducting cavities at high radio-frequency fields","authors":"I. Parajuli, G. Ciovati, A. Gurevich","doi":"10.3389/femat.2024.1339293","DOIUrl":"https://doi.org/10.3389/femat.2024.1339293","url":null,"abstract":"The performance of superconducting radio-frequency Nb cavities at high radio-frequency (rf) fields in the absence of field emission can be limited by either a sharp decrease of the quality factor Q0(Bp) above peak surface magnetic fields Bp ∼100 mT or by a quench. We have measured Q0(Bp) at 2 K of several 1.3 GHz single-cell Nb cavities with different grain sizes, and with different ambient magnetic fields and cooldown rates below the critical temperature. Temperature mapping and a novel magnetic field mapping systems were used to find the location of “hot-spots” and regions of trapped magnetic flux. The use of a variable input coupler allowed further exploring the dissipative state. The results showed a remarkable thermal stability in some cavities with up to 200 W of rf power dissipation at 2 K, whereas other cavities quenched at much lower rf power. We observed a narrow distributions of the onset fields of hot-spots which were not affected by thermal cycling or by conditions which favor the formation of Nb hydrides. Furthermore, a poor correlation was found between the location of hot-spots and trapped vortices. We suggest that the totality of our experimental data can be explained by a sharp increase of the residual surface resistance above 120–140 mT due to the field-induced breakdown of a proximity-coupled metallic suboxide layer at the surface.","PeriodicalId":479808,"journal":{"name":"Frontiers in electronic materials","volume":"30 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140257426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}