clusEvol: An R package for Cluster Evolution Analytics

IF 2.4 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING SoftwareX Pub Date : 2024-10-17 DOI:10.1016/j.softx.2024.101921
Víctor Morales-Oñate , Bolívar Morales-Oñate
{"title":"clusEvol: An R package for Cluster Evolution Analytics","authors":"Víctor Morales-Oñate ,&nbsp;Bolívar Morales-Oñate","doi":"10.1016/j.softx.2024.101921","DOIUrl":null,"url":null,"abstract":"<div><div>The paper proposes a new R package, named <em>clusEvol</em>, that introduces Cluster Evolution Analytics (CEA), a framework for advanced Exploratory Data Analysis and Unsupervised Learning. CEA studies the evolution of an object and its neighbors, identified via clustering algorithms, over time. It combines leave-one-out and plug-in principles, enabling “what if” scenarios by integrating current data into past datasets to explore temporal changes. The framework is demonstrated with a real dataset employing various clustering algorithms.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101921"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024002917","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a new R package, named clusEvol, that introduces Cluster Evolution Analytics (CEA), a framework for advanced Exploratory Data Analysis and Unsupervised Learning. CEA studies the evolution of an object and its neighbors, identified via clustering algorithms, over time. It combines leave-one-out and plug-in principles, enabling “what if” scenarios by integrating current data into past datasets to explore temporal changes. The framework is demonstrated with a real dataset employing various clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
clusEvol:用于集群演化分析的 R 软件包
本文提出了一个新的 R 软件包,名为 clusEvol,其中介绍了聚类演化分析(CEA),这是一个用于高级探索性数据分析和无监督学习的框架。CEA 研究对象及其邻域(通过聚类算法识别)随时间的演变。它结合了 "遗漏 "和 "插入 "原则,通过将当前数据整合到过去的数据集来探索时间变化,从而实现 "假设 "场景。该框架通过采用各种聚类算法的真实数据集进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SoftwareX
SoftwareX COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.50
自引率
2.90%
发文量
184
审稿时长
9 weeks
期刊介绍: SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.
期刊最新文献
Editorial Board DangerDet: A mobile application-based danger detection platform for women and children using deep learning MatGeom: A toolbox for geometry processing with MATLAB NAVI Assistant: A tool to integrate chatbots into EUD Solutions pyLAIS: A Python package for Layered Adaptive Importance Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1