{"title":"Image-guided computational holographic wavefront shaping","authors":"Omri Haim, Jeremy Boger-Lombard, Ori Katz","doi":"10.1038/s41566-024-01544-6","DOIUrl":null,"url":null,"abstract":"<p>Optical imaging through scattering media is important in a variety of fields ranging from microscopy to autonomous vehicles. Although advanced wavefront shaping techniques have offered several breakthroughs in the past decade, current techniques still require a known guide star and a high-resolution spatial light modulator or a very large number of measurements and are limited in their correction field of view. Here we introduce a guide-star-free, non-invasive approach that can correct more than 190,000 scattered modes using only 25 incoherently compounded, holographically measured, scattered light fields, obtained under unknown random illuminations. This is achieved by computationally emulating an image-guided wavefront shaping experiment, where several virtual spatial light modulators are simultaneously optimized to maximize the reconstructed image quality. Our method shifts the burden from the physical hardware to a digital, naturally parallelizable computational optimization, leveraging state-of-the-art automatic differentiation tools. We demonstrate the flexibility and generality of this framework by applying it to imaging through various complex samples and imaging modalities, including epi-illumination, anisoplanatic multi-conjugate correction of highly scattering layers, lensless endoscopy in multicore fibres and acousto-optic tomography. The presented approach offers high versatility, effectiveness and generality for fast, non-invasive imaging in diverse applications.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"102 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01544-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical imaging through scattering media is important in a variety of fields ranging from microscopy to autonomous vehicles. Although advanced wavefront shaping techniques have offered several breakthroughs in the past decade, current techniques still require a known guide star and a high-resolution spatial light modulator or a very large number of measurements and are limited in their correction field of view. Here we introduce a guide-star-free, non-invasive approach that can correct more than 190,000 scattered modes using only 25 incoherently compounded, holographically measured, scattered light fields, obtained under unknown random illuminations. This is achieved by computationally emulating an image-guided wavefront shaping experiment, where several virtual spatial light modulators are simultaneously optimized to maximize the reconstructed image quality. Our method shifts the burden from the physical hardware to a digital, naturally parallelizable computational optimization, leveraging state-of-the-art automatic differentiation tools. We demonstrate the flexibility and generality of this framework by applying it to imaging through various complex samples and imaging modalities, including epi-illumination, anisoplanatic multi-conjugate correction of highly scattering layers, lensless endoscopy in multicore fibres and acousto-optic tomography. The presented approach offers high versatility, effectiveness and generality for fast, non-invasive imaging in diverse applications.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.