Jerome Lapointe, Cedrik Coia, Albert Dupont, Réal Vallée
{"title":"Passive broadband Faraday isolator for hybrid integration to photonic circuits without lens and external magnet","authors":"Jerome Lapointe, Cedrik Coia, Albert Dupont, Réal Vallée","doi":"10.1038/s41566-024-01601-0","DOIUrl":null,"url":null,"abstract":"<p>Optical isolation based on a non-reciprocal effect is crucial for proper operation of several high-performance photonic devices such as in telecommunications, light detection and ranging, and even quantum platforms. The magneto-optical Faraday rotation is the most commonly used non-reciprocal effect as it offers unique advantages, including broadband operation, wide input optical power range, low insertion losses and high optical isolation, but it is currently not conducive to miniaturization. Two major impediments hinder the direct integration of Faraday isolators into photonic chips: the need for bulky external magnets and the challenging fabrication of low-loss waveguides that would eliminate the need for free-space coupling optics. Here we have addressed both challenges using a new femtosecond laser writing technique to create waveguides within the bulk of latched bismuth-doped iron garnet slabs without altering its magneto-optic functionality. As a result, we have achieved a Faraday rotator waveguide exhibiting <0.15 dB insertion loss with a figure of merit of 346° dB<sup>−1</sup>. By interposing this Faraday rotator between two 30-μm-thick polarizers, we further demonstrate a miniaturized optical isolator waveguide with >25 dB isolation ratio and <1.5 dB insertion loss over the entire optical telecom C-band for hybrid integration to photonic circuits without lenses and external magnet.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"77 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01601-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical isolation based on a non-reciprocal effect is crucial for proper operation of several high-performance photonic devices such as in telecommunications, light detection and ranging, and even quantum platforms. The magneto-optical Faraday rotation is the most commonly used non-reciprocal effect as it offers unique advantages, including broadband operation, wide input optical power range, low insertion losses and high optical isolation, but it is currently not conducive to miniaturization. Two major impediments hinder the direct integration of Faraday isolators into photonic chips: the need for bulky external magnets and the challenging fabrication of low-loss waveguides that would eliminate the need for free-space coupling optics. Here we have addressed both challenges using a new femtosecond laser writing technique to create waveguides within the bulk of latched bismuth-doped iron garnet slabs without altering its magneto-optic functionality. As a result, we have achieved a Faraday rotator waveguide exhibiting <0.15 dB insertion loss with a figure of merit of 346° dB−1. By interposing this Faraday rotator between two 30-μm-thick polarizers, we further demonstrate a miniaturized optical isolator waveguide with >25 dB isolation ratio and <1.5 dB insertion loss over the entire optical telecom C-band for hybrid integration to photonic circuits without lenses and external magnet.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.