Autonomous Battery Optimization by Deploying Distributed Experiments and Simulations

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-10-18 DOI:10.1002/aenm.202403263
Monika Vogler, Simon Krarup Steensen, Francisco Fernando Ramírez, Leon Merker, Jonas Busk, Johan Martin Carlsson, Laura Hannemose Rieger, Bojing Zhang, François Liot, Giovanni Pizzi, Felix Hanke, Eibar Flores, Hamidreza Hajiyani, Stefan Fuchs, Alexey Sanin, Miran Gaberšček, Ivano Eligio Castelli, Simon Clark, Tejs Vegge, Arghya Bhowmik, Helge Sören Stein
{"title":"Autonomous Battery Optimization by Deploying Distributed Experiments and Simulations","authors":"Monika Vogler, Simon Krarup Steensen, Francisco Fernando Ramírez, Leon Merker, Jonas Busk, Johan Martin Carlsson, Laura Hannemose Rieger, Bojing Zhang, François Liot, Giovanni Pizzi, Felix Hanke, Eibar Flores, Hamidreza Hajiyani, Stefan Fuchs, Alexey Sanin, Miran Gaberšček, Ivano Eligio Castelli, Simon Clark, Tejs Vegge, Arghya Bhowmik, Helge Sören Stein","doi":"10.1002/aenm.202403263","DOIUrl":null,"url":null,"abstract":"Non-trivial relationships link individual materials properties to device-level performance. Device optimization therefore calls for new automation approaches beyond the laboratory bench with tight integration of different research methods. This study demonstrates a Materials Acceleration Platform (MAP) in the field of battery research based on the problem-agnostic Fast INtention-Agnostic LEarning Server (FINALES) framework, which integrates simulations and physical experiments while leaving the active control of the hardware and software resources executing experiments or simulations with the partners running the respective units. This decentralization of control is a distinctive feature of MAPs using the FINALES framework. The connected capabilities entail the formulation and characterization of electrolytes, cell assembly and testing, early lifetime prediction, and ontology-mapped data storage provided by institutions distributed across Europe. The infrastructure is used to optimize the ionic conductivity of electrolytes and the End Of Life (EOL) of lithium-ion coin cells by varying the electrolyte formulation. Trends in ionic conductivity are rediscovered and the effect of the electrolyte formulation on the EOL is investigated. Further, the capability of this MAP to bridge diverse research modalities, scales, and institutions enabling system-level investigations under asynchronous conditions while handling concurrent workflows on the material- and system-level is shown, demonstrating true intention-agnosticism.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403263","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Non-trivial relationships link individual materials properties to device-level performance. Device optimization therefore calls for new automation approaches beyond the laboratory bench with tight integration of different research methods. This study demonstrates a Materials Acceleration Platform (MAP) in the field of battery research based on the problem-agnostic Fast INtention-Agnostic LEarning Server (FINALES) framework, which integrates simulations and physical experiments while leaving the active control of the hardware and software resources executing experiments or simulations with the partners running the respective units. This decentralization of control is a distinctive feature of MAPs using the FINALES framework. The connected capabilities entail the formulation and characterization of electrolytes, cell assembly and testing, early lifetime prediction, and ontology-mapped data storage provided by institutions distributed across Europe. The infrastructure is used to optimize the ionic conductivity of electrolytes and the End Of Life (EOL) of lithium-ion coin cells by varying the electrolyte formulation. Trends in ionic conductivity are rediscovered and the effect of the electrolyte formulation on the EOL is investigated. Further, the capability of this MAP to bridge diverse research modalities, scales, and institutions enabling system-level investigations under asynchronous conditions while handling concurrent workflows on the material- and system-level is shown, demonstrating true intention-agnosticism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过部署分布式实验和模拟实现自主电池优化
单个材料特性与设备性能之间存在着非同一般的关系。因此,设备优化要求在实验室工作台之外采用新的自动化方法,并将不同的研究方法紧密结合起来。本研究展示了电池研究领域的材料加速平台(MAP),该平台基于不考虑问题的快速注意力诊断学习服务器(FINALES)框架,它集成了模拟和物理实验,同时将执行实验或模拟的硬件和软件资源的主动控制权留给运行相应单元的合作伙伴。这种分散控制是使用 FINALES 框架的 MAP 的一个显著特点。连接功能包括电解质的配制和表征、电池组装和测试、早期寿命预测以及本体映射数据存储,这些功能由分布在欧洲各地的机构提供。通过改变电解质配方,该基础设施可用于优化电解质的离子电导率和锂离子纽扣电池的使用寿命(EOL)。重新发现了离子电导率的趋势,并研究了电解液配方对 EOL 的影响。此外,该 MAP 能够在不同的研究模式、规模和机构之间架起桥梁,在异步条件下进行系统级研究,同时处理材料级和系统级的并行工作流,展示了真正的意图无关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Polymer Acceptor Copolymerized with Luminescent Unit for High-Performance All-Polymer Solar Cells with Low Non-radiative Energy Loss Autonomous Battery Optimization by Deploying Distributed Experiments and Simulations Catalytic Strategies Enabled Rapid Formation of Homogeneous and Mechanically Robust Inorganic-Rich Cathode Electrolyte Interface for High-Rate and High-Stability Lithium-Ion Batteries Conformal Sodium Deposition Facilitated by Ion Adsorption-Intercalation Process within Hetero-Interface for Stable Sodium Metal Batteries Mass Transportation Facilitated Porous Fe/Co Dual-Site Catalytic Cathodes for Ultrahigh-Power-Density Al–Air Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1