Rational construction of N-containing carbon sheets atomically doped NiP-CoP nanohybrid electrocatalysts for enhanced green hydrogen and oxygen production

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-10-18 DOI:10.1016/j.electacta.2024.145236
Adewale K. Ipadeola, Mostafa H. Sliem, Patrick Mwonga, Kenneth I. Ozoemena, Aboubakr M. Abdullah
{"title":"Rational construction of N-containing carbon sheets atomically doped NiP-CoP nanohybrid electrocatalysts for enhanced green hydrogen and oxygen production","authors":"Adewale K. Ipadeola, Mostafa H. Sliem, Patrick Mwonga, Kenneth I. Ozoemena, Aboubakr M. Abdullah","doi":"10.1016/j.electacta.2024.145236","DOIUrl":null,"url":null,"abstract":"The pursuit of sustainable energy production has directed rigorous research in the field of electrocatalysis, particularly for water electrolysis (i.e., hydrogen (HER) and oxygen evolution reactions (OER)). This study discloses the rational synthesis of N-containing carbon sheets atomically doped NiP-CoP nanohybrid (NiP-CoP/NCS) via precipitation/calcination. The fabrication method tailored the physicochemical merits for collective contribution to improved green hydrogen and oxygen, elucidated by surface/bulk characterization and theoretical calculations. Thus, the NiP-CoP/NCS had improved HER activity at lower overpotential (<em>ƞ</em><sub>10</sub> = 197.7/274.6 mV), higher exchange current density (<em>j</em><sub>o</sub> = 0.71/0.67 mA/cm<sup>2</sup>), turnover frequency (TOF = 2.63/1.47 s<sup>-1</sup>), H<sub>2</sub> production rate (3601.63/2519.12 µmol/g/h) and superior stability after 24 h in acid/alkaline media, than NiP/NCS and CoP/NCS. Moreover, NiP-CoP/NCS delivered impressive OER activity at reduced <em>ƞ</em><sub>10</sub> (309.1 mV), and Tafel slope (<em>b</em><sub>a</sub> = 58.9 ± 3.0 mV/dec), but higher TOF (3.67 s<sup>-1</sup>) and O<sub>2</sub> production rate (3643.96 µmol/g/h) relative to NiP/NCS and CoP/NCS, besides higher stability for 24 h. These were further proved by theoretical calculations. This work indicates a deeper understanding of the fabrication methods of making efficient electrocatalysts for green and sustainable energy conversion.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145236","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of sustainable energy production has directed rigorous research in the field of electrocatalysis, particularly for water electrolysis (i.e., hydrogen (HER) and oxygen evolution reactions (OER)). This study discloses the rational synthesis of N-containing carbon sheets atomically doped NiP-CoP nanohybrid (NiP-CoP/NCS) via precipitation/calcination. The fabrication method tailored the physicochemical merits for collective contribution to improved green hydrogen and oxygen, elucidated by surface/bulk characterization and theoretical calculations. Thus, the NiP-CoP/NCS had improved HER activity at lower overpotential (ƞ10 = 197.7/274.6 mV), higher exchange current density (jo = 0.71/0.67 mA/cm2), turnover frequency (TOF = 2.63/1.47 s-1), H2 production rate (3601.63/2519.12 µmol/g/h) and superior stability after 24 h in acid/alkaline media, than NiP/NCS and CoP/NCS. Moreover, NiP-CoP/NCS delivered impressive OER activity at reduced ƞ10 (309.1 mV), and Tafel slope (ba = 58.9 ± 3.0 mV/dec), but higher TOF (3.67 s-1) and O2 production rate (3643.96 µmol/g/h) relative to NiP/NCS and CoP/NCS, besides higher stability for 24 h. These were further proved by theoretical calculations. This work indicates a deeper understanding of the fabrication methods of making efficient electrocatalysts for green and sustainable energy conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合理构建含氮碳片原子掺杂 NiP-CoP 纳米杂化电催化剂,提高绿色制氢制氧能力
对可持续能源生产的追求引导了电催化领域的深入研究,尤其是水电解(即氢(HER)和氧进化反应(OER))。本研究揭示了通过沉淀/煅烧合理合成含氮碳片原子掺杂 NiP-CoP 纳米杂化物(NiP-CoP/NCS)的方法。通过表面/块体表征和理论计算,阐明了该制备方法对改善绿色氢气和氧气的集体贡献的物理化学优点。因此,与 NiP/NCS 和 CoP/NCS 相比,NiP-CoP/NCS 在较低的过电位(ƞ10 = 197.7/274.6 mV)、较高的交换电流密度(jo = 0.71/0.67 mA/cm2)、翻转频率(TOF = 2.63/1.47 s-1)、H2 产率(3601.63/2519.12 µmol/g/h)和在酸碱介质中 24 小时后的稳定性方面均有改善。此外,与 NiP/NCS 和 CoP/NCS 相比,NiP-CoP/NCS 在降低ƞ10(309.1 mV)和 Tafel 斜坡(ba = 58.9 ± 3.0 mV/dec)时具有令人印象深刻的 OER 活性,但 TOF(3.67 s-1)和 O2 生成率(3643.96 µmol/g/h)更高,而且 24 小时稳定性更高。这项工作表明,人们对用于绿色和可持续能源转换的高效电催化剂的制造方法有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Rational construction of N-containing carbon sheets atomically doped NiP-CoP nanohybrid electrocatalysts for enhanced green hydrogen and oxygen production Nitrogen Doping Enhances Pseudocapacitive Lithium Storage and Ionic Conductivity in Ti2Nb2O9 Nanosheets Synchronous Interlayer and surface engineering of NiFe layered double hydroxides by functional ligands for boosting oxygen evolution reaction Sustainable Hydrogen Production with Synergistic Electron Transfer Enhancement in Nickel-Based Alkaline HER Electrocatalyst Empowered by Graphene Oxide Super-hydrophilic and Expanded Graphite Foil as Support for Pd-Co electrodeposition: An Effective Catalyst for Glycerol Electrooxidation and HWE Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1