Resource sharing of an infant gut microbiota synthetic community in combinations of human milk oligosaccharides

Athanasia Ioannou, Maryse D Berkhout, William T Scott, Bernadet Blijenberg, Sjef Boeren, Marko Mank, Jan Knol, Clara Belzer
{"title":"Resource sharing of an infant gut microbiota synthetic community in combinations of human milk oligosaccharides","authors":"Athanasia Ioannou, Maryse D Berkhout, William T Scott, Bernadet Blijenberg, Sjef Boeren, Marko Mank, Jan Knol, Clara Belzer","doi":"10.1093/ismejo/wrae209","DOIUrl":null,"url":null,"abstract":"Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community. Here, we designed BIG-Syc, a synthetic community of 13 strains from the gut of vaginally born, breastfed infants. BIG-Syc replicated key compositional, metabolic, and proteomic characteristics of the gut microbiota of infants. Upon fermentation of a 4 and 5 human milk oligosaccharide mix, BIG-Syc demonstrated different compositional and proteomic profiles, with Bifidobacterium infantis and Bifidobacterium bifidum suppressing one another. The mix of 5 human milk oligosaccharides resulted in a more diverse composition with dominance of B. bifidum, whereas that with 4 human milk oligosaccharides supported the dominance of B. infantis, in 4 of 6 replicates. Reintroduction of bifidobacteria to BIG-Syc led to their engraftment and establishment of their niche. Based on proteomics and genome-scale metabolic models, we reconstructed the carbon source utilization and metabolite and gas production per strain. BIG-Syc demonstrated teamwork as cross-feeders utilized simpler carbohydrates, organic acids, and gases released from human milk oligosaccharide degraders. Collectively, our results showed that human milk oligosaccharides prompt resource-sharing for their complete degradation while leading to a different compositional and functional profile in the community. At the same time, BIG-Syc proved to be an accurate model for the representation of intra-microbe interactions.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community. Here, we designed BIG-Syc, a synthetic community of 13 strains from the gut of vaginally born, breastfed infants. BIG-Syc replicated key compositional, metabolic, and proteomic characteristics of the gut microbiota of infants. Upon fermentation of a 4 and 5 human milk oligosaccharide mix, BIG-Syc demonstrated different compositional and proteomic profiles, with Bifidobacterium infantis and Bifidobacterium bifidum suppressing one another. The mix of 5 human milk oligosaccharides resulted in a more diverse composition with dominance of B. bifidum, whereas that with 4 human milk oligosaccharides supported the dominance of B. infantis, in 4 of 6 replicates. Reintroduction of bifidobacteria to BIG-Syc led to their engraftment and establishment of their niche. Based on proteomics and genome-scale metabolic models, we reconstructed the carbon source utilization and metabolite and gas production per strain. BIG-Syc demonstrated teamwork as cross-feeders utilized simpler carbohydrates, organic acids, and gases released from human milk oligosaccharide degraders. Collectively, our results showed that human milk oligosaccharides prompt resource-sharing for their complete degradation while leading to a different compositional and functional profile in the community. At the same time, BIG-Syc proved to be an accurate model for the representation of intra-microbe interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
母乳低聚糖组合中婴儿肠道微生物群合成群落的资源共享
婴儿出生后,肠道微生物群很快就会通过物种获取和资源压力而形成。母乳,更具体地说,母乳低聚糖是微生物群落形成和细菌间相互作用的决定性因素。主要的母乳寡糖降解剂已被严格鉴定,但肠道微生物群如何形成一个复杂的群落尚不清楚。在这里,我们设计了 BIG-Syc,一个由 13 株阴道出生、母乳喂养婴儿肠道菌株组成的合成群落。BIG-Syc 复制了婴儿肠道微生物群的主要组成、代谢和蛋白质组特征。在发酵 4 种和 5 种母乳寡糖混合物时,BIG-Syc 表现出不同的组成和蛋白质组特征,婴儿双歧杆菌和双歧杆菌相互抑制。在 6 个重复中的 4 个中,5 种人乳低聚糖的混合物产生了更多样化的组成,双歧杆菌占主导地位,而 4 种人乳低聚糖的混合物则支持婴儿双歧杆菌占主导地位。在 BIG-Syc 中重新引入双歧杆菌可使它们接种并建立自己的生态位。基于蛋白质组学和基因组尺度代谢模型,我们重建了每个菌株对碳源的利用以及代谢物和气体的产生。BIG-Syc表现出了团队合作精神,交叉进食者利用了更简单的碳水化合物、有机酸和人乳寡糖降解剂释放的气体。总之,我们的研究结果表明,人乳寡糖促使资源共享,以实现完全降解,同时导致群落中不同的组成和功能特征。与此同时,BIG-Syc 被证明是一个准确的微生物内部相互作用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus–host interactions Marine N2-fixer Crocosphaera waterburyi Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence Metagenomic time-series reveals a western English Channel viral community dominated by members with strong seasonal signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1