Automated Bayesian variable selection methods for binary regression models with missing covariate data

Michael Bergrab, Christian Aßmann
{"title":"Automated Bayesian variable selection methods for binary regression models with missing covariate data","authors":"Michael Bergrab,&nbsp;Christian Aßmann","doi":"10.1007/s11943-024-00345-1","DOIUrl":null,"url":null,"abstract":"<div><p>Data collection and the availability of large data sets has increased over the last decades. In both statistical and machine learning frameworks, two methodological issues typically arise when performing regression analysis on large data sets. First, variable selection is crucial in regression modeling, as it helps to identify an appropriate model with respect to the considered set of conditioning variables. Second, especially in the context of survey data, handling of missing values is important for estimation, which occur even with state-of-the-art data collection and processing methods. Within this paper, we provide an Bayesian approach based on a spike-and-slab prior for the regression coefficients, which allows for simultaneous handling of variable selection and estimation in combination with handling of missing values in covariate data. The paper also discusses the implementation of the approach using Markov chain Monte Carlo techniques and provides results for simulated data sets and an empirical illustration based on data from the German National Educational Panel Study. The suggested Bayesian approach is compared to other statistical and machine learning frameworks such as Lasso, ridge regression, and Elastic net, and is shown to perform well in terms of estimation performance and variable selection accuracy. The simulation results demonstrate that ignoring the handling of missing values in data sets can lead to the generation of biased selection results. Overall, the proposed Bayesian method offers a holistic, flexible, and powerful framework for variable selection in the presence of missing covariate data.</p></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"18 2","pages":"203 - 244"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11943-024-00345-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-024-00345-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data collection and the availability of large data sets has increased over the last decades. In both statistical and machine learning frameworks, two methodological issues typically arise when performing regression analysis on large data sets. First, variable selection is crucial in regression modeling, as it helps to identify an appropriate model with respect to the considered set of conditioning variables. Second, especially in the context of survey data, handling of missing values is important for estimation, which occur even with state-of-the-art data collection and processing methods. Within this paper, we provide an Bayesian approach based on a spike-and-slab prior for the regression coefficients, which allows for simultaneous handling of variable selection and estimation in combination with handling of missing values in covariate data. The paper also discusses the implementation of the approach using Markov chain Monte Carlo techniques and provides results for simulated data sets and an empirical illustration based on data from the German National Educational Panel Study. The suggested Bayesian approach is compared to other statistical and machine learning frameworks such as Lasso, ridge regression, and Elastic net, and is shown to perform well in terms of estimation performance and variable selection accuracy. The simulation results demonstrate that ignoring the handling of missing values in data sets can lead to the generation of biased selection results. Overall, the proposed Bayesian method offers a holistic, flexible, and powerful framework for variable selection in the presence of missing covariate data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有缺失协变量数据的二元回归模型的贝叶斯变量自动选择方法
过去几十年来,数据收集和大型数据集的可用性不断增加。在统计和机器学习框架中,对大型数据集进行回归分析时通常会出现两个方法问题。首先,变量选择在回归建模中至关重要,因为它有助于根据所考虑的条件变量集确定合适的模型。其次,特别是在调查数据的情况下,处理缺失值对估计非常重要,即使采用最先进的数据收集和处理方法也会出现这种情况。在本文中,我们提供了一种基于回归系数的尖峰和平板先验的贝叶斯方法,它可以同时处理变量选择和估计,并结合处理协变量数据中的缺失值。论文还讨论了如何利用马尔科夫链蒙特卡罗技术实现该方法,并提供了模拟数据集的结果和基于德国国家教育面板研究数据的经验说明。将所建议的贝叶斯方法与其他统计和机器学习框架(如 Lasso、脊回归和弹性网)进行了比较,结果表明该方法在估计性能和变量选择准确性方面表现良好。模拟结果表明,忽略数据集中缺失值的处理会导致产生有偏差的选择结果。总之,所提出的贝叶斯方法为存在缺失协变量数据时的变量选择提供了一个全面、灵活和强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vorwort der Herausgeber Connecting algorithmic fairness to quality dimensions in machine learning in official statistics and survey production Automated Bayesian variable selection methods for binary regression models with missing covariate data Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln Interview mit Walter Krämer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1