Molecular Insights into the Microscopic Behavior of CO2 Hydrates in Oceanic Sediments: Implications for Carbon Sequestration

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-10-21 DOI:10.1021/acs.jpcc.4c05413
Fengyi Mi, Wei Li, Jiangtao Pang, Othonas A. Moultos, Fulong Ning, Thijs J.H. Vlugt
{"title":"Molecular Insights into the Microscopic Behavior of CO2 Hydrates in Oceanic Sediments: Implications for Carbon Sequestration","authors":"Fengyi Mi, Wei Li, Jiangtao Pang, Othonas A. Moultos, Fulong Ning, Thijs J.H. Vlugt","doi":"10.1021/acs.jpcc.4c05413","DOIUrl":null,"url":null,"abstract":"Knowledge of the microscopic behavior of CO<sub>2</sub> hydrates in oceanic sediments is crucial to evaluate the efficiency and stability of hydrate-based CO<sub>2</sub> sequestration in oceans. Here, systematic molecular dynamics simulations are executed to investigate the growth and dissociation of CO<sub>2</sub> hydrates, and the mechanical instability of CO<sub>2</sub> hydrate-Illite interface in the brine-urea-Illite system. Simulation results show that the CO<sub>2</sub> hydrate growth is jointly affected by the confined space, Illite surface properties, and presence of urea. Specifically, the interfacial H<sub>2</sub>O and the ion layer on the Illite surface hinder the growth of CO<sub>2</sub> hydrate crystals toward Illite surfaces. Urea molecules can bind salt ions and increase CO<sub>2</sub> concentrations in the water, thus kinetically promoting CO<sub>2</sub> hydrate growth. The dissociation of the CO<sub>2</sub> hydrate is affected by Illite surface properties and the CO<sub>2</sub> hydrate structure. CO<sub>2</sub> hydrate starts from the regions where hydrate particles are minimally in contact and extends on both sides. The mechanical tension and compression of the CO<sub>2</sub> hydrate-Illite interface exhibit nonlinear characteristics by changing the hydrogen bonds and the CO<sub>2</sub> hydrate structure. The molecular insight into the microscopic behavior of CO<sub>2</sub> hydrates in the brine-urea-Illite system contributes to a broader understanding of hydrate-based CO<sub>2</sub> sequestration.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05413","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of the microscopic behavior of CO2 hydrates in oceanic sediments is crucial to evaluate the efficiency and stability of hydrate-based CO2 sequestration in oceans. Here, systematic molecular dynamics simulations are executed to investigate the growth and dissociation of CO2 hydrates, and the mechanical instability of CO2 hydrate-Illite interface in the brine-urea-Illite system. Simulation results show that the CO2 hydrate growth is jointly affected by the confined space, Illite surface properties, and presence of urea. Specifically, the interfacial H2O and the ion layer on the Illite surface hinder the growth of CO2 hydrate crystals toward Illite surfaces. Urea molecules can bind salt ions and increase CO2 concentrations in the water, thus kinetically promoting CO2 hydrate growth. The dissociation of the CO2 hydrate is affected by Illite surface properties and the CO2 hydrate structure. CO2 hydrate starts from the regions where hydrate particles are minimally in contact and extends on both sides. The mechanical tension and compression of the CO2 hydrate-Illite interface exhibit nonlinear characteristics by changing the hydrogen bonds and the CO2 hydrate structure. The molecular insight into the microscopic behavior of CO2 hydrates in the brine-urea-Illite system contributes to a broader understanding of hydrate-based CO2 sequestration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋沉积物中二氧化碳水合物微观行为的分子洞察:对碳封存的影响
了解海洋沉积物中二氧化碳水合物的微观行为对于评估海洋中基于水合物的二氧化碳封存的效率和稳定性至关重要。在此,我们进行了系统的分子动力学模拟,以研究二氧化碳水合物的生长和解离,以及盐水-尿素-沸石体系中二氧化碳水合物-沸石界面的力学不稳定性。模拟结果表明,二氧化碳水合物的生长受到密闭空间、伊利石表面特性和尿素存在的共同影响。具体来说,界面 H2O 和伊利石表面的离子层阻碍了 CO2 水合物晶体向伊利石表面的生长。尿素分子可以结合盐离子,增加水中的二氧化碳浓度,从而在动力学上促进二氧化碳水合物的生长。CO2 水合物的解离受伊利石表面特性和 CO2 水合物结构的影响。二氧化碳水合物从水合物颗粒接触最少的区域开始,向两侧延伸。通过改变氢键和 CO2 水合物结构,CO2 水合物-伊利石界面的机械拉伸和压缩表现出非线性特征。对盐水-尿素-沸石体系中二氧化碳水合物微观行为的分子洞察有助于更广泛地理解基于水合物的二氧化碳封存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Modulation of Semiconductor Doping of 2D GeSe in h-BN/GeSe van der Waals Heterostructure Molecular Insights into the Microscopic Behavior of CO2 Hydrates in Oceanic Sediments: Implications for Carbon Sequestration Pseudo Two-Dimensional Model for the Design of Fast-Charging Lithium-Ion Battery Electrodes Dirac States versus Nearly-Free-Electron States in Ternary C2As6(1–x)P6x Monolayers – A Density Functional Theory Study Nonadiabatic Couplings Facilitate Excitation Wavelength–Dependent Fluorescence in a Cyclooctatetraene-Based Polymorph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1