{"title":"Computational screening of umami tastants using deep learning.","authors":"Prantar Dutta, Kishore Gajula, Nitu Verma, Deepak Jain, Rakesh Gupta, Beena Rai","doi":"10.1007/s11030-024-11006-4","DOIUrl":null,"url":null,"abstract":"<p><p>Umami, a fundamental human taste modality, refers to the savory flavors in meats and broths, often associated with monosodium glutamate and protein richness. With limited knowledge of umami molecules, the food industry seeks efficient approaches for identifying novel tastants. In this study, we have devised a virtual screening pipeline for identifying highly potent umami tastants from large molecular databases. We curated the most extensive classification dataset containing 439 umami and 428 non-umami molecules and trained a transformer-based architecture to differentiate between the two classes, achieving 93% accuracy. Additionally, we built a neural network model for predicting the potency of umami compounds, the first effort of its kind. The classification and potency prediction models were combined with similarity analysis and toxicity screening to build an end-to-end virtual framework for the rational discovery of novel tastants. We applied this framework to the FooDB database containing around 70,000 molecules as an illustrative use case for screening potent umami compounds. The screened molecules were validated using molecular docking with the umami taste receptor. This study demonstrates the potential of data-driven methods in discovering new tastants from structural and chemical features of molecules and proposes an efficient implementation for industrial applications.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11006-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Umami, a fundamental human taste modality, refers to the savory flavors in meats and broths, often associated with monosodium glutamate and protein richness. With limited knowledge of umami molecules, the food industry seeks efficient approaches for identifying novel tastants. In this study, we have devised a virtual screening pipeline for identifying highly potent umami tastants from large molecular databases. We curated the most extensive classification dataset containing 439 umami and 428 non-umami molecules and trained a transformer-based architecture to differentiate between the two classes, achieving 93% accuracy. Additionally, we built a neural network model for predicting the potency of umami compounds, the first effort of its kind. The classification and potency prediction models were combined with similarity analysis and toxicity screening to build an end-to-end virtual framework for the rational discovery of novel tastants. We applied this framework to the FooDB database containing around 70,000 molecules as an illustrative use case for screening potent umami compounds. The screened molecules were validated using molecular docking with the umami taste receptor. This study demonstrates the potential of data-driven methods in discovering new tastants from structural and chemical features of molecules and proposes an efficient implementation for industrial applications.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;