40 years since the Heidelberg genetic screen that revolutionized developmental and cell biology.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Development Pub Date : 2024-11-01 Epub Date: 2024-10-21 DOI:10.1242/dev.204433
Mark Peifer
{"title":"40 years since the Heidelberg genetic screen that revolutionized developmental and cell biology.","authors":"Mark Peifer","doi":"10.1242/dev.204433","DOIUrl":null,"url":null,"abstract":"<p><p>Our current understanding of the molecular basis of embryonic development and the shared machinery underlying this remarkable process has its roots in three papers published 40 years ago, which summarize the results of the Nobel Prize-winning 'Heidelberg screen'. The genesis of these experiments that empowered us and the stories behind the experiments are worth revisiting.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 21","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204433","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our current understanding of the molecular basis of embryonic development and the shared machinery underlying this remarkable process has its roots in three papers published 40 years ago, which summarize the results of the Nobel Prize-winning 'Heidelberg screen'. The genesis of these experiments that empowered us and the stories behind the experiments are worth revisiting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海德堡基因筛选彻底改变了发育生物学和细胞生物学,距今已有 40 年。
我们目前对胚胎发育的分子基础和这一非凡过程的共享机制的理解源于 40 年前发表的三篇论文,它们总结了获得诺贝尔奖的 "海德堡筛选 "的结果。这些赋予我们力量的实验的起源和实验背后的故事值得我们重温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
期刊最新文献
Ear pinna growth and differentiation is conserved in murids and requires BMP signaling for chondrocyte proliferation. Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis. BMP and STRA8 act collaboratively to ensure correct mitotic-to-meiotic transition in the fetal mouse ovary. Single cell derived multicellular meristem: insights into male-to-hermaphrodite conversion and de novo meristem formation in ceratopteris. Examining the NEUROG2 lineage and associated gene expression in human cortical organoids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1