BMP and STRA8 act collaboratively to ensure correct mitotic-to-meiotic transition in the fetal mouse ovary.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Development Pub Date : 2025-01-16 DOI:10.1242/dev.204227
Fiona K M Cheung, Chun-Wei Allen Feng, Clare Crisp, Yuji Mishina, Cassy M Spiller, Josephine Bowles
{"title":"BMP and STRA8 act collaboratively to ensure correct mitotic-to-meiotic transition in the fetal mouse ovary.","authors":"Fiona K M Cheung, Chun-Wei Allen Feng, Clare Crisp, Yuji Mishina, Cassy M Spiller, Josephine Bowles","doi":"10.1242/dev.204227","DOIUrl":null,"url":null,"abstract":"<p><p>A successful mitosis-to-meiosis transition in germ cells is essential for fertility in sexually reproducing organisms. In mice and humans, it is established that expression of STRA8 is critical for meiotic onset in both sexes. Here we show that BMP signalling is also essential, not for STRA8 induction but for correct meiotic progression in female mouse fetal germ cells. Largely in agreement with evidence from primordial germ cell-like cells (PGCLCs) in vitro, germ cell-specific deletion of BMP receptor 1A (BMPR1A; ALK3) caused aberrant retention of pluripotency marker OCT4 and meiotic progression was compromised; however, the timely onset of Stra8/STRA8 expression was unaffected. Comparing the transcriptomes of Bmpr1a-cKO and Stra8-null models, we reveal interplay between the effects of BMP signalling and STRA8 function. Our results verify a role for BMP signalling in instructing germ cell meiosis in female mice in vivo, and shed light on the regulatory mechanisms underlying fetal germ cell development.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A successful mitosis-to-meiosis transition in germ cells is essential for fertility in sexually reproducing organisms. In mice and humans, it is established that expression of STRA8 is critical for meiotic onset in both sexes. Here we show that BMP signalling is also essential, not for STRA8 induction but for correct meiotic progression in female mouse fetal germ cells. Largely in agreement with evidence from primordial germ cell-like cells (PGCLCs) in vitro, germ cell-specific deletion of BMP receptor 1A (BMPR1A; ALK3) caused aberrant retention of pluripotency marker OCT4 and meiotic progression was compromised; however, the timely onset of Stra8/STRA8 expression was unaffected. Comparing the transcriptomes of Bmpr1a-cKO and Stra8-null models, we reveal interplay between the effects of BMP signalling and STRA8 function. Our results verify a role for BMP signalling in instructing germ cell meiosis in female mice in vivo, and shed light on the regulatory mechanisms underlying fetal germ cell development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BMP和STRA8协同作用,确保胚胎小鼠卵巢中有丝分裂向减数分裂的正确转变。
生殖细胞中有丝分裂到减数分裂的成功转变对有性生殖生物的生育能力至关重要。在小鼠和人类中,已经确定STRA8的表达对于两性减数分裂的发生至关重要。在这里,我们发现BMP信号也是必不可少的,不是为了STRA8的诱导,而是为了雌性小鼠胎儿生殖细胞的正确减数分裂过程。与体外原始生殖细胞样细胞(pgclc)的证据基本一致,生殖细胞特异性缺失BMP受体1A (BMPR1A;ALK3)引起多能性标记物OCT4的异常保留,减数分裂进程受到损害;然而,Stra8/ Stra8的及时表达不受影响。比较Bmpr1a-cKO和STRA8 -null模型的转录组,我们揭示了BMP信号传导和STRA8功能之间的相互作用。我们的研究结果证实了BMP信号在雌性小鼠体内指导生殖细胞减数分裂中的作用,并揭示了胎儿生殖细胞发育的调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
期刊最新文献
Cdkn1c orchestrates a molecular network that regulates the euploidy of the male mouse germline stem cells. Ear pinna growth and differentiation is conserved in murids and requires BMP signaling for chondrocyte proliferation. Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis. BMP and STRA8 act collaboratively to ensure correct mitotic-to-meiotic transition in the fetal mouse ovary. Single cell derived multicellular meristem: insights into male-to-hermaphrodite conversion and de novo meristem formation in ceratopteris.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1