Single cell derived multicellular meristem: insights into male-to-hermaphrodite conversion and de novo meristem formation in ceratopteris.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Development Pub Date : 2025-01-16 DOI:10.1242/dev.204411
Xi Yang, An Yan, Xing Liu, Alexandria Volkening, Yun Zhou
{"title":"Single cell derived multicellular meristem: insights into male-to-hermaphrodite conversion and de novo meristem formation in ceratopteris.","authors":"Xi Yang, An Yan, Xing Liu, Alexandria Volkening, Yun Zhou","doi":"10.1242/dev.204411","DOIUrl":null,"url":null,"abstract":"<p><p>Land plants alternate between asexual sporophytes and sexual gametophytes. Unlike seed plants, ferns develop free-living gametophytes. Gametophytes of the model fern Ceratopteris exhibit two sex types: hermaphrodites with pluripotent meristems and males lacking meristems. In the absence of the pheromone antheridiogen, males convert to hermaphrodites by forming de novo meristems, though the mechanisms remain unclear. Using long-term time-lapse imaging and computational analyses, we captured male-to-hermaphrodite conversion at single-cell resolution and reconstructed the lineage and division atlas of newly formed meristems. Lineage tracing revealed that the de novo-formed meristem originates from a single non-antheridium cell, the meristem progenitor cell (MPC). During conversion, the MPC lineage showed increased mitotic activity, with marginal cells proliferating faster than inner cells. A mathematical model suggests that stochastic variation in cell division, combined with strong inhibitory signals from dividing marginal cells, is sufficient to explain gametophyte dynamics. Experimental disruption of division timing agreed with the model, showing precise cell cycle progression is essential for MPC establishment and sex-type conversion. These findings reveal cellular mechanisms governing sex conversion and de novo meristem formation in land plants.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204411","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Land plants alternate between asexual sporophytes and sexual gametophytes. Unlike seed plants, ferns develop free-living gametophytes. Gametophytes of the model fern Ceratopteris exhibit two sex types: hermaphrodites with pluripotent meristems and males lacking meristems. In the absence of the pheromone antheridiogen, males convert to hermaphrodites by forming de novo meristems, though the mechanisms remain unclear. Using long-term time-lapse imaging and computational analyses, we captured male-to-hermaphrodite conversion at single-cell resolution and reconstructed the lineage and division atlas of newly formed meristems. Lineage tracing revealed that the de novo-formed meristem originates from a single non-antheridium cell, the meristem progenitor cell (MPC). During conversion, the MPC lineage showed increased mitotic activity, with marginal cells proliferating faster than inner cells. A mathematical model suggests that stochastic variation in cell division, combined with strong inhibitory signals from dividing marginal cells, is sufficient to explain gametophyte dynamics. Experimental disruption of division timing agreed with the model, showing precise cell cycle progression is essential for MPC establishment and sex-type conversion. These findings reveal cellular mechanisms governing sex conversion and de novo meristem formation in land plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞衍生的多细胞分生组织:角翅目雄性向雌雄同体转化和新生分生组织形成的见解。
陆地植物在无性孢子体和有性配子体之间交替生长。与种子植物不同,蕨类植物的配子体是自由生长的。模式蕨类角蕨的配子体表现出两种性别类型:具有多能分生组织的雌雄同体和缺乏分生组织的雄性。在缺乏信息素的情况下,雄性通过形成新生分生组织转变为雌雄同体,尽管机制尚不清楚。利用长期延时成像和计算分析,我们在单细胞分辨率下捕获了雄性到雌雄同体的转化,并重建了新形成的分生组织的谱系和分裂图谱。谱系追踪显示,新生形成的分生系统起源于单一的非腺细胞,分生系统祖细胞(MPC)。在转化过程中,MPC谱系显示有丝分裂活性增加,边缘细胞比内部细胞增殖更快。一个数学模型表明,细胞分裂的随机变化,结合边缘细胞分裂产生的强烈抑制信号,足以解释配子体动力学。分裂时间的实验中断与模型一致,表明精确的细胞周期进程对于MPC的建立和性别类型转换至关重要。这些发现揭示了陆地植物性别转化和新生分生组织形成的细胞机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
期刊最新文献
Cdkn1c orchestrates a molecular network that regulates the euploidy of the male mouse germline stem cells. Ear pinna growth and differentiation is conserved in murids and requires BMP signaling for chondrocyte proliferation. Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis. BMP and STRA8 act collaboratively to ensure correct mitotic-to-meiotic transition in the fetal mouse ovary. Single cell derived multicellular meristem: insights into male-to-hermaphrodite conversion and de novo meristem formation in ceratopteris.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1