Bilateral Alignment of Receptive Fields in the Olfactory Cortex.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2024-10-21 DOI:10.1523/ENEURO.0155-24.2024
Julien Grimaud, William Dorrell, Siddharth Jayakumar, Cengiz Pehlevan, Venkatesh Murthy
{"title":"Bilateral Alignment of Receptive Fields in the Olfactory Cortex.","authors":"Julien Grimaud, William Dorrell, Siddharth Jayakumar, Cengiz Pehlevan, Venkatesh Murthy","doi":"10.1523/ENEURO.0155-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex are disordered and non-topographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the olfactory cortex, odor information across the two hemispheres is highly coordinated.<b>Significance statement</b> Like other sense organs, animals typically have two nostrils, but how odor information from the two sides is combined to build bilateral olfactory representations remains largely unknown. Grimaud et al. find that the responses of neurons in the olfactory cortex in awake mice to odors presented separately to the ipsilateral or contralateral nostril are significantly correlated, beyond chance. Such aligned responses could arise from Hebbian plasticity in interhemispheric connections that relies on common odor experiences across the two nostrils. While responses are correlated, the remaining asymmetries in responses to the two nostrils allowed decoding of stimulus laterality. This study points to unexpected order in an olfactory circuit and prompts future work on how olfactory experience can shape interhemispheric information integration.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0155-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex are disordered and non-topographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the olfactory cortex, odor information across the two hemispheres is highly coordinated.Significance statement Like other sense organs, animals typically have two nostrils, but how odor information from the two sides is combined to build bilateral olfactory representations remains largely unknown. Grimaud et al. find that the responses of neurons in the olfactory cortex in awake mice to odors presented separately to the ipsilateral or contralateral nostril are significantly correlated, beyond chance. Such aligned responses could arise from Hebbian plasticity in interhemispheric connections that relies on common odor experiences across the two nostrils. While responses are correlated, the remaining asymmetries in responses to the two nostrils allowed decoding of stimulus laterality. This study points to unexpected order in an olfactory circuit and prompts future work on how olfactory experience can shape interhemispheric information integration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Sex-Dependent Changes in Gonadotropin-Releasing Hormone Neuron Voltage-Gated Potassium Currents in a Mouse Model of Temporal Lobe Epilepsy. Bilateral Alignment of Receptive Fields in the Olfactory Cortex. Peripheral CaV2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. The Neural Correlates of Spontaneous Beat Processing and Its Relationship with Music-Related Characteristics of the Individual. The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1