Association between multiple metal exposure and bone mineral density among Chinese adults.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-10-14 DOI:10.1007/s10653-024-02261-3
Gaojie Fan, Qing Liu, Mingyang Wu, Jianing Bi, Xiya Qin, Qing Fang, Surong Mei, Zhengce Wan, Yongman Lv, Lulu Song, Youjie Wang
{"title":"Association between multiple metal exposure and bone mineral density among Chinese adults.","authors":"Gaojie Fan, Qing Liu, Mingyang Wu, Jianing Bi, Xiya Qin, Qing Fang, Surong Mei, Zhengce Wan, Yongman Lv, Lulu Song, Youjie Wang","doi":"10.1007/s10653-024-02261-3","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies about metal exposures and bone mineral density (BMD) have mainly focused on individual metals. The objective of this study was to explore the association of single and multiple metal exposures with BMD among Chinese adults. We recruited 2922 participants from Tongji Hospital in Wuhan, China. The urinary concentrations of 21 metals were measured by the inductively coupled plasma mass spectrometer. BMD was measured using dual-energy X-ray absorptiometry. We applied linear regression and Bayesian kernel machine regression (BKMR) to examine the association of single and multiple metal exposure with BMD, respectively. The linear regression model showed that cadmium (Cd) and strontium (Sr) were associated with lower BMD (all P-trend < 0.05). Compared with the lowest quantiles, the β (95% CI) of BMD in the highest quartile of Cd and Sr was - 0.032 (- 0.049, - 0.016) and - 0.033 (- 0.049, - 0.018), respectively. The BKMR results showed that co-exposure to 21 metals was negatively associated with BMD among the total participants and males. Our study suggested that exposure to multiple metals was negatively associated with BMD, particularly among males. More prospective studies are needed to identify these associations and reveal the underlying mechanisms.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"475"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02261-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies about metal exposures and bone mineral density (BMD) have mainly focused on individual metals. The objective of this study was to explore the association of single and multiple metal exposures with BMD among Chinese adults. We recruited 2922 participants from Tongji Hospital in Wuhan, China. The urinary concentrations of 21 metals were measured by the inductively coupled plasma mass spectrometer. BMD was measured using dual-energy X-ray absorptiometry. We applied linear regression and Bayesian kernel machine regression (BKMR) to examine the association of single and multiple metal exposure with BMD, respectively. The linear regression model showed that cadmium (Cd) and strontium (Sr) were associated with lower BMD (all P-trend < 0.05). Compared with the lowest quantiles, the β (95% CI) of BMD in the highest quartile of Cd and Sr was - 0.032 (- 0.049, - 0.016) and - 0.033 (- 0.049, - 0.018), respectively. The BKMR results showed that co-exposure to 21 metals was negatively associated with BMD among the total participants and males. Our study suggested that exposure to multiple metals was negatively associated with BMD, particularly among males. More prospective studies are needed to identify these associations and reveal the underlying mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国成年人接触多种金属与骨矿物质密度之间的关系
以往有关金属暴露和骨矿物质密度(BMD)的研究主要集中在单种金属上。本研究的目的是探讨单一和多重金属暴露与中国成年人骨密度的关系。我们从武汉同济医院招募了 2922 名参与者。采用电感耦合等离子体质谱仪测量了尿液中 21 种金属的浓度。采用双能 X 射线吸收测量法测量 BMD。我们分别采用线性回归和贝叶斯核机器回归(BKMR)来研究单一金属和多种金属暴露与 BMD 的关系。线性回归模型显示,镉(Cd)和锶(Sr)与较低的 BMD 相关(所有 P-trend
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Mercury in saliva, milk, and hair of nursing mothers in southeastern Iranian mothers: levels, distribution and risk assessment. Radon quantification in water and dose estimation via inhalation and ingestion across age groups in the Pattan region of North Kashmir, India. Effects of microplastics on 3,5-dichloroaniline adsorption, degradation, bioaccumulation and phytotoxicity in soil-chive systems. The impact of prenatal exposure to fine particulate matter and its components on maternal and neonatal thyroid function and birth weight: a prospective cohort study. Chemical analysis of toxic elements: total cadmium, lead, mercury, arsenic and inorganic arsenic in local and imported rice consumed in the Kingdom of Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1