Alejandra Vargas, Julián E López, Adriana Jaimes, Juan F Saldarriaga
{"title":"Phytoremediation of Hg and chlorpyrifos contaminated soils using Phaseolus vulgaris L. with biochar, mycorrhizae, and compost amendments.","authors":"Alejandra Vargas, Julián E López, Adriana Jaimes, Juan F Saldarriaga","doi":"10.1007/s10653-024-02244-4","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic activities, encompassing vast agricultural and industrial operations around the world, exert substantial pressure on the environment, culminating in profound ecological impacts. These activities exacerbate soil contamination problems with pollutants such as mercury (Hg) and chlorpyrifos (CPF) that are notable for their widespread presence and detrimental effects. The objective of this study is to evaluate the phytoremediation potential of Phaseolus vulgaris L., augmented with various combinations of biochar, mycorrhizal, and compost amendments, as a sustainable alternative for the remediation of soils contaminated with Hg and CPF. For this purpose, soil from a mining area with mercury contamination has been taken, to which CPF has been added in different concentrations. Then, previously germinated Phaseolus vulgaris L. seedlings with an average height of 10 cm were planted. Electrical conductivity, pH, organic matter, CPF, and Hg, as well as seedling growth parameters, have been evaluated to determine the processes of absorption of soil contaminants into the plant. A combination of biochar with mycorrhiza has been found to be an optimal choice for CPF and Hg remediation. However, all amendments have proven to be efficient in the remediation processes of the tested contaminants.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"478"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02244-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anthropogenic activities, encompassing vast agricultural and industrial operations around the world, exert substantial pressure on the environment, culminating in profound ecological impacts. These activities exacerbate soil contamination problems with pollutants such as mercury (Hg) and chlorpyrifos (CPF) that are notable for their widespread presence and detrimental effects. The objective of this study is to evaluate the phytoremediation potential of Phaseolus vulgaris L., augmented with various combinations of biochar, mycorrhizal, and compost amendments, as a sustainable alternative for the remediation of soils contaminated with Hg and CPF. For this purpose, soil from a mining area with mercury contamination has been taken, to which CPF has been added in different concentrations. Then, previously germinated Phaseolus vulgaris L. seedlings with an average height of 10 cm were planted. Electrical conductivity, pH, organic matter, CPF, and Hg, as well as seedling growth parameters, have been evaluated to determine the processes of absorption of soil contaminants into the plant. A combination of biochar with mycorrhiza has been found to be an optimal choice for CPF and Hg remediation. However, all amendments have proven to be efficient in the remediation processes of the tested contaminants.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.