Min Wu, Dongmei Zeng, Shuo Han, Minmin Zou, Ting Zhang, You Zhang
{"title":"Mercaptopropionic acid-capped CdZnTe Quantum dots as Fluorescence Probe for Sensitive Detection of Cr(III) ions.","authors":"Min Wu, Dongmei Zeng, Shuo Han, Minmin Zou, Ting Zhang, You Zhang","doi":"10.1007/s10895-024-03970-9","DOIUrl":null,"url":null,"abstract":"<p><p>Although Cr(III) ions are essential for the human body, excessive amounts can lead to skin inflammation, allergic reactions, and genotoxicity. A highly sensitive fluorescence probe was developed using mercaptopropionic acid (MPA) capped CdZnTe quantum dots (QDs) synthesized via an aqueous solution heating method for precise detection of Cr(III) ions. The synthesized MPA-CdZnTe QDs had a size of 2.38 ± 0.13 nm and exhibited a zinc-blende structure, with MPA molecules effectively capping the surface through Cd-S bonds. Investigation into the effects of reflux times and solution pH on the absorption and fluorescence spectra of MPA-CdZnTe QDs revealed the occurrence of Ostwald ripening during prolonged reflux processes. The quantum yield (QY) of the synthesized CdZnTe QDs could reach 89%, and the QY was higher under acidic conditions than alkaline. Leveraging the quenching effect of Cr(III) ions on MPA-CdZnTe QDs, a robust method for the quantitative detection of trace amounts of Cr(III) ions was established. Linear quenching behavior was observed within the concentration range of 3.33 × 10<sup>- 6</sup> to 5.00 × 10<sup>- 4</sup> mol L<sup>- 1</sup> for Cr(III) ions, with the fluorescence quenching rate described by a linear regression equation: 1-F/F<sub>0</sub> = 0.218 + 829.5268C<sub>Cr(III)</sub>. The limit of detection was determined to be 2.63 × 10<sup>- 6</sup> mol L<sup>- 1</sup>. The mechanism of the fluorescence behavior of MPA capped CdZnTe QDs towards Cr(III) ions was photo-induced electron transfer.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03970-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Although Cr(III) ions are essential for the human body, excessive amounts can lead to skin inflammation, allergic reactions, and genotoxicity. A highly sensitive fluorescence probe was developed using mercaptopropionic acid (MPA) capped CdZnTe quantum dots (QDs) synthesized via an aqueous solution heating method for precise detection of Cr(III) ions. The synthesized MPA-CdZnTe QDs had a size of 2.38 ± 0.13 nm and exhibited a zinc-blende structure, with MPA molecules effectively capping the surface through Cd-S bonds. Investigation into the effects of reflux times and solution pH on the absorption and fluorescence spectra of MPA-CdZnTe QDs revealed the occurrence of Ostwald ripening during prolonged reflux processes. The quantum yield (QY) of the synthesized CdZnTe QDs could reach 89%, and the QY was higher under acidic conditions than alkaline. Leveraging the quenching effect of Cr(III) ions on MPA-CdZnTe QDs, a robust method for the quantitative detection of trace amounts of Cr(III) ions was established. Linear quenching behavior was observed within the concentration range of 3.33 × 10- 6 to 5.00 × 10- 4 mol L- 1 for Cr(III) ions, with the fluorescence quenching rate described by a linear regression equation: 1-F/F0 = 0.218 + 829.5268CCr(III). The limit of detection was determined to be 2.63 × 10- 6 mol L- 1. The mechanism of the fluorescence behavior of MPA capped CdZnTe QDs towards Cr(III) ions was photo-induced electron transfer.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.