DiffModeler: large macromolecular structure modeling for cryo-EM maps using a diffusion model.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-10-21 DOI:10.1038/s41592-024-02479-0
Xiao Wang, Han Zhu, Genki Terashi, Manav Taluja, Daisuke Kihara
{"title":"DiffModeler: large macromolecular structure modeling for cryo-EM maps using a diffusion model.","authors":"Xiao Wang, Han Zhu, Genki Terashi, Manav Taluja, Daisuke Kihara","doi":"10.1038/s41592-024-02479-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multichain protein complexes. However, modeling a large complex structure, such as those with more than ten chains, is challenging, particularly when the map resolution decreases. Here we present DiffModeler, a fully automated method for modeling large protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. DiffModeler showed an average template modeling score of 0.88 and 0.91 for two datasets of cryo-EM maps of 0-5 Å resolution and 0.92 for intermediate resolution maps (5-10 Å), substantially outperforming existing methodologies. Further benchmarking at low resolutions (10-20 Å) confirms its versatility, demonstrating plausible performance.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02479-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multichain protein complexes. However, modeling a large complex structure, such as those with more than ten chains, is challenging, particularly when the map resolution decreases. Here we present DiffModeler, a fully automated method for modeling large protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. DiffModeler showed an average template modeling score of 0.88 and 0.91 for two datasets of cryo-EM maps of 0-5 Å resolution and 0.92 for intermediate resolution maps (5-10 Å), substantially outperforming existing methodologies. Further benchmarking at low resolutions (10-20 Å) confirms its versatility, demonstrating plausible performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DiffModeler:利用扩散模型为低温电子显微镜图建立大分子结构模型。
低温电子显微镜(cryo-EM)目前已被广泛用于确定多链蛋白质复合物。然而,对大型复合物结构建模(如那些有十多条链的复合物)是一项挑战,尤其是当图谱分辨率降低时。在此,我们介绍一种全自动的大型蛋白质复合体结构建模方法 DiffModeler。DiffModeler 采用扩散模型进行骨架追踪,并整合 AlphaFold2 预测的单链结构进行结构拟合。DiffModeler 对两个 0-5 Å 分辨率的低温电子显微镜图数据集的平均模板建模得分分别为 0.88 和 0.91,对中等分辨率图(5-10 Å)的平均模板建模得分为 0.92,大大优于现有方法。在低分辨率(10-20 Å)下的进一步基准测试证实了该方法的多功能性,并展示了合理的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening. First-timers at a huge meeting. Precision mutational scanning: your multipass to the future of genetics. Repurposing large-format microarrays for scalable spatial transcriptomics. A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1