Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses.

IF 1.8 3区 农林科学 Q2 PLANT SCIENCES Plant Pathology Journal Pub Date : 2024-10-01 DOI:10.5423/PPJ.OA.07.2024.0104
Guogeng Jia, Khaing Shwe Zin Thinn, Sun Ha Kim, Jiyoung Min, Sang-Keun Oh
{"title":"Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses.","authors":"Guogeng Jia, Khaing Shwe Zin Thinn, Sun Ha Kim, Jiyoung Min, Sang-Keun Oh","doi":"10.5423/PPJ.OA.07.2024.0104","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 5","pages":"512-524"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.07.2024.0104","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辣椒 NAC4(CaNAC4)是一种在生物和非生物压力中发挥作用的转录因子。
转录因子(TF)通过与 DNA 结合来调节基因表达。植物中的 NAC 基因家族由影响植物发育和胁迫反应的关键转录因子组成。辣椒的全基因组显示了 100 多个 NAC 基因(CaNAC)。大多数 CaNAC TFs 的功能特征尚不清楚。在这项研究中,我们在辣椒中发现了一种新的 NAC TF--CaNAC4。在接种病原体 Xanthomonas axonopodis pv. vesicatoria race 3 和 X. axonopodis pv. glycines 8ra 以及使用植物激素水杨酸和脱落酸处理后,CaNAC4 的表达增加。我们研究了 CaNAC4 基因的功能特征及其在转基因烟草中耐盐性和抗病原防御中的作用。为了分析盐胁迫,野生型和 CaNAC4 转基因 N. benthamiana 植物的叶盘暴露在不同浓度的氯化钠中。经盐胁迫处理的野生型植株叶绿素的损失比 CaNAC4 转基因植株更为严重。为了分析 CaNAC4 在抗病原防御中的作用,研究人员用灰霉病菌的孢子悬浮液感染叶片。灰葡萄孢引起的病害逐渐加重,而 CaNAC4 转基因品系的症状更为明显。我们还研究了 CaNAC4 转基因植物的超敏反应(HR)。结果表明,野生型植株在受到细胞凋亡调节因子 BAX 的侵染后,会出现更强的超敏反应。总之,我们的研究结果表明,CaNAC4 可能会增强植物的耐盐性,并充当植物生物胁迫的负调控因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Pathology Journal
Plant Pathology Journal 生物-植物科学
CiteScore
4.90
自引率
4.30%
发文量
71
审稿时长
12 months
期刊介绍: Information not localized
期刊最新文献
Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides. Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities. Re-identification of Korean Isolates in the Colletotrichum dematium, C. magnum, C. orchidearum, and C. orbiculare Species Complexes. Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness. Arabidopsis WRKY55 Transcription Factor Enhances Soft Rot Disease Resistance with ORA59.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1