An SCA-based classifier for motor imagery EEG classification.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-10-12 DOI:10.1080/10255842.2024.2414069
Zhihui Li, Ming Meng
{"title":"An SCA-based classifier for motor imagery EEG classification.","authors":"Zhihui Li, Ming Meng","doi":"10.1080/10255842.2024.2414069","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and accurate multi-class classification of electroencephalogram (EEG) signals poses a significant challenge in the development of motor imagery-based brain-computer interface (MI-BCI). Drawing inspiration from the sine cosine algorithm (SCA), a widely employed swarm intelligence algorithm for optimization problems, we proposed a novel population-based classification algorithm for EEG signals in this article. To fully leverage the characteristics contained in EEG signals, multi-scale sub-signals were constructed in terms of temporal windows and spectral bands simultaneously, and the common spatial pattern (CSP) features were extracted from each sub-signal. Subsequently, we integrated the multi-center optimal vectors mechanism into the classical SCA, resulting in the development of a multi-center SCA (MCSCA) classifier. During the classification stage, the label was assigned to the test trials by evaluating the Euclidean distance between their feature vectors and each optimal vector in MCSCA. Additionally, the weights of feature vectors were exploited to select the sub-signal of specific temporal windows and spectral bands for feature reduction, thereby declining computational effort and eliminating data redundancy. To validate the performance of the MCSCA classifier, we conducted four-class classification experiments using the BCI Competition IV dataset 2a, achieving an average classification accuracy of 71.89%. The experimental results show that the proposed algorithm offers a novel and effective approach for EEG classification.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2414069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and accurate multi-class classification of electroencephalogram (EEG) signals poses a significant challenge in the development of motor imagery-based brain-computer interface (MI-BCI). Drawing inspiration from the sine cosine algorithm (SCA), a widely employed swarm intelligence algorithm for optimization problems, we proposed a novel population-based classification algorithm for EEG signals in this article. To fully leverage the characteristics contained in EEG signals, multi-scale sub-signals were constructed in terms of temporal windows and spectral bands simultaneously, and the common spatial pattern (CSP) features were extracted from each sub-signal. Subsequently, we integrated the multi-center optimal vectors mechanism into the classical SCA, resulting in the development of a multi-center SCA (MCSCA) classifier. During the classification stage, the label was assigned to the test trials by evaluating the Euclidean distance between their feature vectors and each optimal vector in MCSCA. Additionally, the weights of feature vectors were exploited to select the sub-signal of specific temporal windows and spectral bands for feature reduction, thereby declining computational effort and eliminating data redundancy. To validate the performance of the MCSCA classifier, we conducted four-class classification experiments using the BCI Competition IV dataset 2a, achieving an average classification accuracy of 71.89%. The experimental results show that the proposed algorithm offers a novel and effective approach for EEG classification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 SCA 的运动图像脑电图分类器。
对脑电图(EEG)信号进行高效、准确的多类分类是开发基于运动图像的脑机接口(MI-BCI)的一大挑战。本文从正弦余弦算法(SCA)这一广泛应用于优化问题的群体智能算法中汲取灵感,提出了一种新颖的基于群体的脑电信号分类算法。为了充分利用脑电信号所包含的特征,我们同时从时间窗口和频谱带构建了多尺度子信号,并从每个子信号中提取了共同空间模式(CSP)特征。随后,我们将多中心最优向量机制集成到经典 SCA 中,从而开发出多中心 SCA(MCSCA)分类器。在分类阶段,通过评估测试试验的特征向量与 MCSCA 中每个最优向量之间的欧氏距离,为测试试验分配标签。此外,还利用特征向量的权重选择特定时间窗口和频谱带的子信号进行特征缩减,从而减少计算量并消除数据冗余。为了验证 MCSCA 分类器的性能,我们使用 BCI Competition IV 数据集 2a 进行了四类分类实验,平均分类准确率达到 71.89%。实验结果表明,所提出的算法为脑电图分类提供了一种新颖而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Coexistence of horizontal bone loss and dehiscence with the bundle and conventional fiber post: a finite element analysis. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Mechanical effect of taper position in abutment hole and screw taper angles on implant system and peri-implant tissue: a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1