Dynamic strategies and optimal control analysis for hepatitis C management: non-invasive liver fibrosis diagnosis.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-10-14 DOI:10.1080/10255842.2024.2410976
Rahat Zarin, Nehal Shukla, Amir Khan, Jagdish Shukla, Usa Wannasingha Humphries
{"title":"Dynamic strategies and optimal control analysis for hepatitis C management: non-invasive liver fibrosis diagnosis.","authors":"Rahat Zarin, Nehal Shukla, Amir Khan, Jagdish Shukla, Usa Wannasingha Humphries","doi":"10.1080/10255842.2024.2410976","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a novel model employing nonlinear ordinary differential equations to dissect HCV dynamics. Six distinct population groups are delineated: Susceptible, Treatment, Responder, Non-Responder, Cured, and Fibrosis. A detailed numerical analysis of this model was conducted, tracking the predicted trends over a span of 20 years. The primary objective of this analysis is to assess and confirm the model's predictive accuracy and its potential to supplant invasive diagnostic methods in monitoring the progression of liver fibrosis. By incorporating various control parameters, namely <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>1</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mrow><msub><mrow><mi>u</mi></mrow><mn>2</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></math> and <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>3</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo></math> the model offers a nuanced perspective on disease progression and treatment outcomes. Parameter <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>1</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> modulates treatment-induced fibrosis progression, providing a crucial lever for mitigating treatment-related side effects. <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>2</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> reflects treatment effectiveness, capturing the proportion of responders within the treatment cohort. Meanwhile, <math><mrow><mrow><msub><mrow><mi>u</mi></mrow><mn>3</mn></msub></mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> governs fibrosis progression in non-responders, shedding light on the disease's natural trajectory without effective treatment.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2410976","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel model employing nonlinear ordinary differential equations to dissect HCV dynamics. Six distinct population groups are delineated: Susceptible, Treatment, Responder, Non-Responder, Cured, and Fibrosis. A detailed numerical analysis of this model was conducted, tracking the predicted trends over a span of 20 years. The primary objective of this analysis is to assess and confirm the model's predictive accuracy and its potential to supplant invasive diagnostic methods in monitoring the progression of liver fibrosis. By incorporating various control parameters, namely u1(t),u2(t), and u3(t), the model offers a nuanced perspective on disease progression and treatment outcomes. Parameter u1(t) modulates treatment-induced fibrosis progression, providing a crucial lever for mitigating treatment-related side effects. u2(t) reflects treatment effectiveness, capturing the proportion of responders within the treatment cohort. Meanwhile, u3(t) governs fibrosis progression in non-responders, shedding light on the disease's natural trajectory without effective treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丙型肝炎管理的动态策略和最优控制分析:无创肝纤维化诊断。
本研究提出了一种采用非线性常微分方程来剖析 HCV 动态变化的新型模型。该模型划分了六个不同的群体:易感人群、治疗人群、应答人群、非应答人群、治愈人群和纤维化人群。对这一模型进行了详细的数值分析,追踪了 20 年的预测趋势。该分析的主要目的是评估和确认该模型的预测准确性及其在监测肝纤维化进展方面取代侵入性诊断方法的潜力。通过纳入各种控制参数,即 u1(t)、u2(t) 和 u3(t),该模型为疾病进展和治疗结果提供了一个细致入微的视角。参数 u1(t) 调节治疗引起的纤维化进展,为减轻治疗相关副作用提供了重要杠杆。与此同时,u3(t) 则控制着无应答者的纤维化进展,揭示了疾病在没有有效治疗的情况下的自然轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Coexistence of horizontal bone loss and dehiscence with the bundle and conventional fiber post: a finite element analysis. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Mechanical effect of taper position in abutment hole and screw taper angles on implant system and peri-implant tissue: a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1