{"title":"The Effects of Electronic Health Records on Medical Error Reduction: Extension of the DeLone and McLean Information System Success Model.","authors":"Bester Chimbo, Lovemore Motsi","doi":"10.2196/54572","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medical errors are becoming a major problem for health care providers and those who design health policies. These errors cause patients' illnesses to worsen over time and can make recovery impossible. For the benefit of patients and the welfare of health care providers, a decrease in these errors is required to maintain safe, high-quality patient care.</p><p><strong>Objective: </strong>This study aimed to improve the ability of health care professionals to diagnose diseases and reduce medical errors.</p><p><strong>Methods: </strong>Data collection was performed at Dr George Mukhari Academic Hospital using convenience sampling. In total, 300 health care professionals were given a self-administered questionnaire, including doctors, dentists, pharmacists, physiologists, and nurses. To test the study hypotheses, multiple linear regression was used to evaluate empirical data.</p><p><strong>Results: </strong>In the sample of 300 health care professionals, no significant correlation was found between medical error reduction (MER) and knowledge quality (KQ) (β=.043, P=.48). A nonsignificant negative relationship existed between MER and information quality (IQ) (β=-.080, P=.19). However, a significant positive relationship was observed between MER and electronic health records (EHR; β=.125, 95% CI 0.005-0.245, P=.042).</p><p><strong>Conclusions: </strong>Increasing patient access to medical records for health care professionals may significantly improve patient health and well-being. The effectiveness of health care organizations' operations can also be increased through better health information systems. To lower medical errors and enhance patient outcomes, policy makers should provide financing and support for EHR adoption as a top priority. Health care administrators should also concentrate on providing staff with the training they need to operate these systems efficiently. Empirical surveys in other public and private hospitals can be used to further test the validated survey instrument.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e54572"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/54572","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Medical errors are becoming a major problem for health care providers and those who design health policies. These errors cause patients' illnesses to worsen over time and can make recovery impossible. For the benefit of patients and the welfare of health care providers, a decrease in these errors is required to maintain safe, high-quality patient care.
Objective: This study aimed to improve the ability of health care professionals to diagnose diseases and reduce medical errors.
Methods: Data collection was performed at Dr George Mukhari Academic Hospital using convenience sampling. In total, 300 health care professionals were given a self-administered questionnaire, including doctors, dentists, pharmacists, physiologists, and nurses. To test the study hypotheses, multiple linear regression was used to evaluate empirical data.
Results: In the sample of 300 health care professionals, no significant correlation was found between medical error reduction (MER) and knowledge quality (KQ) (β=.043, P=.48). A nonsignificant negative relationship existed between MER and information quality (IQ) (β=-.080, P=.19). However, a significant positive relationship was observed between MER and electronic health records (EHR; β=.125, 95% CI 0.005-0.245, P=.042).
Conclusions: Increasing patient access to medical records for health care professionals may significantly improve patient health and well-being. The effectiveness of health care organizations' operations can also be increased through better health information systems. To lower medical errors and enhance patient outcomes, policy makers should provide financing and support for EHR adoption as a top priority. Health care administrators should also concentrate on providing staff with the training they need to operate these systems efficiently. Empirical surveys in other public and private hospitals can be used to further test the validated survey instrument.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.