Assessing Total Hip Arthroplasty Outcomes and Generating an Orthopedic Research Outcome Database via a Natural Language Processing Pipeline: Development and Validation Study.
{"title":"Assessing Total Hip Arthroplasty Outcomes and Generating an Orthopedic Research Outcome Database via a Natural Language Processing Pipeline: Development and Validation Study.","authors":"Nicholas H Mast, Clara L Oeste, Dries Hens","doi":"10.2196/64705","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. However, most private data systems prevent obtaining usable insights for clinical practice.</p><p><strong>Objective: </strong>This study aims to create an automated natural language processing (NLP) pipeline for extracting clinical concepts from EHRs related to orthopedic outpatient visits, hospitalizations, and surgeries in a multicenter, single-surgeon practice. The pipeline was also used to assess therapies and complications after total hip arthroplasty (THA).</p><p><strong>Methods: </strong>EHRs of 1290 patients undergoing primary THA from January 1, 2012 to December 31, 2019 (operated and followed by the same surgeon) were processed using artificial intelligence (AI)-based models (NLP and machine learning). In addition, 3 independent medical reviewers generated a gold standard using 100 randomly selected EHRs. The algorithm processed the entire database from different EHR systems, generating an aggregated clinical data warehouse. An additional manual control arm was used for data quality control.</p><p><strong>Results: </strong>The algorithm was as accurate as human reviewers (0.95 vs 0.94; P=.01), achieving a database-wide average F1-score of 0.92 (SD 0.09; range 0.67-0.99), validating its use as an automated data extraction tool. During the first year after direct anterior THA, 92.1% (1188/1290) of our population had a complication-free recovery. In 7.9% (102/1290) of cases where surgery or recovery was not uneventful, lateral femoral cutaneous nerve sensitivity (47/1290, 3.6%), intraoperative fractures (13/1290, 1%), and hematoma (9/1290, 0.7%) were the most common complications.</p><p><strong>Conclusions: </strong>Algorithm evaluation of this dataset accurately represented key clinical information swiftly, compared with human reviewers. This technology may provide substantial value for future surgeon practice and patient counseling. Furthermore, the low early complication rate of direct anterior THA in this surgeon's hands was supported by the dataset, which included data from all treated patients in a multicenter practice.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e64705"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64705","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. However, most private data systems prevent obtaining usable insights for clinical practice.
Objective: This study aims to create an automated natural language processing (NLP) pipeline for extracting clinical concepts from EHRs related to orthopedic outpatient visits, hospitalizations, and surgeries in a multicenter, single-surgeon practice. The pipeline was also used to assess therapies and complications after total hip arthroplasty (THA).
Methods: EHRs of 1290 patients undergoing primary THA from January 1, 2012 to December 31, 2019 (operated and followed by the same surgeon) were processed using artificial intelligence (AI)-based models (NLP and machine learning). In addition, 3 independent medical reviewers generated a gold standard using 100 randomly selected EHRs. The algorithm processed the entire database from different EHR systems, generating an aggregated clinical data warehouse. An additional manual control arm was used for data quality control.
Results: The algorithm was as accurate as human reviewers (0.95 vs 0.94; P=.01), achieving a database-wide average F1-score of 0.92 (SD 0.09; range 0.67-0.99), validating its use as an automated data extraction tool. During the first year after direct anterior THA, 92.1% (1188/1290) of our population had a complication-free recovery. In 7.9% (102/1290) of cases where surgery or recovery was not uneventful, lateral femoral cutaneous nerve sensitivity (47/1290, 3.6%), intraoperative fractures (13/1290, 1%), and hematoma (9/1290, 0.7%) were the most common complications.
Conclusions: Algorithm evaluation of this dataset accurately represented key clinical information swiftly, compared with human reviewers. This technology may provide substantial value for future surgeon practice and patient counseling. Furthermore, the low early complication rate of direct anterior THA in this surgeon's hands was supported by the dataset, which included data from all treated patients in a multicenter practice.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.