Large Language Model-Based Critical Care Big Data Deployment and Extraction: Descriptive Analysis.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2025-03-12 DOI:10.2196/63216
Zhongbao Yang, Shan-Shan Xu, Xiaozhu Liu, Ningyuan Xu, Yuqing Chen, Shuya Wang, Ming-Yue Miao, Mengxue Hou, Shuai Liu, Yi-Min Zhou, Jian-Xin Zhou, Linlin Zhang
{"title":"Large Language Model-Based Critical Care Big Data Deployment and Extraction: Descriptive Analysis.","authors":"Zhongbao Yang, Shan-Shan Xu, Xiaozhu Liu, Ningyuan Xu, Yuqing Chen, Shuya Wang, Ming-Yue Miao, Mengxue Hou, Shuai Liu, Yi-Min Zhou, Jian-Xin Zhou, Linlin Zhang","doi":"10.2196/63216","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Publicly accessible critical care-related databases contain enormous clinical data, but their utilization often requires advanced programming skills. The growing complexity of large databases and unstructured data presents challenges for clinicians who need programming or data analysis expertise to utilize these systems directly.</p><p><strong>Objective: </strong>This study aims to simplify critical care-related database deployment and extraction via large language models.</p><p><strong>Methods: </strong>The development of this platform was a 2-step process. First, we enabled automated database deployment using Docker container technology, with incorporated web-based analytics interfaces Metabase and Superset. Second, we developed the intensive care unit-generative pretrained transformer (ICU-GPT), a large language model fine-tuned on intensive care unit (ICU) data that integrated LangChain and Microsoft AutoGen.</p><p><strong>Results: </strong>The automated deployment platform was designed with user-friendliness in mind, enabling clinicians to deploy 1 or multiple databases in local, cloud, or remote environments without the need for manual setup. After successfully overcoming GPT's token limit and supporting multischema data, ICU-GPT could generate Structured Query Language (SQL) queries and extract insights from ICU datasets based on request input. A front-end user interface was developed for clinicians to achieve code-free SQL generation on the web-based client.</p><p><strong>Conclusions: </strong>By harnessing the power of our automated deployment platform and ICU-GPT model, clinicians are empowered to easily visualize, extract, and arrange critical care-related databases more efficiently and flexibly than manual methods. Our research could decrease the time and effort spent on complex bioinformatics methods and advance clinical research.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e63216"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/63216","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Publicly accessible critical care-related databases contain enormous clinical data, but their utilization often requires advanced programming skills. The growing complexity of large databases and unstructured data presents challenges for clinicians who need programming or data analysis expertise to utilize these systems directly.

Objective: This study aims to simplify critical care-related database deployment and extraction via large language models.

Methods: The development of this platform was a 2-step process. First, we enabled automated database deployment using Docker container technology, with incorporated web-based analytics interfaces Metabase and Superset. Second, we developed the intensive care unit-generative pretrained transformer (ICU-GPT), a large language model fine-tuned on intensive care unit (ICU) data that integrated LangChain and Microsoft AutoGen.

Results: The automated deployment platform was designed with user-friendliness in mind, enabling clinicians to deploy 1 or multiple databases in local, cloud, or remote environments without the need for manual setup. After successfully overcoming GPT's token limit and supporting multischema data, ICU-GPT could generate Structured Query Language (SQL) queries and extract insights from ICU datasets based on request input. A front-end user interface was developed for clinicians to achieve code-free SQL generation on the web-based client.

Conclusions: By harnessing the power of our automated deployment platform and ICU-GPT model, clinicians are empowered to easily visualize, extract, and arrange critical care-related databases more efficiently and flexibly than manual methods. Our research could decrease the time and effort spent on complex bioinformatics methods and advance clinical research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Assessing Total Hip Arthroplasty Outcomes and Generating an Orthopedic Research Outcome Database via a Natural Language Processing Pipeline: Development and Validation Study. GPT-3.5 Turbo and GPT-4 Turbo in Title and Abstract Screening for Systematic Reviews. Large Language Model-Based Critical Care Big Data Deployment and Extraction: Descriptive Analysis. The Perceptions of Potential Prerequisites for Artificial Intelligence in Danish General Practice: Vignette-Based Interview Study Among General Practitioners. Prescription Refill Adherence Before and After Patient Portal Registration in Among General Practice Patients in England Using the Clinical Practice Research Datalink: Longitudinal Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1