Modal identification of wind turbine tower based on optimal fractional order statistical moments

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-10-23 DOI:10.1111/mice.13361
Yang Yang, Zhewei Wang, Shuai Tao, Qingshan Yang, Hwa Kian Chai
{"title":"Modal identification of wind turbine tower based on optimal fractional order statistical moments","authors":"Yang Yang, Zhewei Wang, Shuai Tao, Qingshan Yang, Hwa Kian Chai","doi":"10.1111/mice.13361","DOIUrl":null,"url":null,"abstract":"In vibration testing of civil engineering structures, the first two vibration modes are crucial in representing the global dynamic behavior of the structure measured. In the present study, a comprehensive method is proposed to identify the first two vibration modes of wind turbine towers, which is based on the analysis of fractional order statistical moments (FSM). This study offers novel contributions in two key aspects: (1) theoretical derivations of the relationship between FSM and vibration mode; and (2) successful use of 32/7-order displacement statistical moment <span data-altimg=\"/cms/asset/c88d0200-4120-4dd6-a987-0b203283f98b/mice13361-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"162\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/mice13361-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"0,9\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper M Subscript d Superscript 32 divided by 7 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msubsup data-semantic-children=\"1,2,6\" data-semantic-collapsed=\"(8 (7 1 2) 6)\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.317em; margin-left: -0.081em;\"><mjx-mrow data-semantic-children=\"3,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" size=\"s\" style=\"margin-left: 0.191em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:10939687:media:mice13361:mice13361-math-0001\" display=\"inline\" location=\"graphic/mice13361-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"0,9\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper M Subscript d Superscript 32 divided by 7 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><msubsup data-semantic-=\"\" data-semantic-children=\"1,2,6\" data-semantic-collapsed=\"(8 (7 1 2) 6)\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">M</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mrow data-semantic-=\"\" data-semantic-children=\"3,5\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">32</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">7</mn></mrow></msubsup><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$( {M_d^{32/7}} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> as the optimal FSM to identify wind turbine tower modes, by combining with noise resistance analysis, sensitivity analysis, and stability analysis, respectively. Using the proposed method, the FSM was first used to identify the modal vibration of wind turbine towers. By obtaining the response of the structure on the same vertical line, FSM was then calculated to estimate the corresponding structural modal vibration. Considering other influencing factors in the field test, the modal identification results of this index under different excitation forms and noise conditions were analyzed based on numerical simulation and verified with field wind tower test data. The results of the evaluation show that the proposed statistical moments of <span data-altimg=\"/cms/asset/199a41a8-cf5b-40ad-afb5-405720e0559e/mice13361-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"163\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/mice13361-math-0002.png\"><mjx-semantics><mjx-msubsup data-semantic-children=\"0,1,5\" data-semantic-collapsed=\"(7 (6 0 1) 5)\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper M Subscript d Superscript 32 divided by 7\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.317em; margin-left: -0.081em;\"><mjx-mrow data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" size=\"s\" style=\"margin-left: 0.191em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msubsup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:10939687:media:mice13361:mice13361-math-0002\" display=\"inline\" location=\"graphic/mice13361-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msubsup data-semantic-=\"\" data-semantic-children=\"0,1,5\" data-semantic-collapsed=\"(7 (6 0 1) 5)\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper M Subscript d Superscript 32 divided by 7\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">M</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mrow data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">32</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">7</mn></mrow></msubsup>$M_d^{32/7}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> can accurately identify the first two vibration modes of wind turbine towers. This presents a new robust method for modal vibration identification, that is, simple and effective in its implementation.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"3 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13361","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In vibration testing of civil engineering structures, the first two vibration modes are crucial in representing the global dynamic behavior of the structure measured. In the present study, a comprehensive method is proposed to identify the first two vibration modes of wind turbine towers, which is based on the analysis of fractional order statistical moments (FSM). This study offers novel contributions in two key aspects: (1) theoretical derivations of the relationship between FSM and vibration mode; and (2) successful use of 32/7-order displacement statistical moment (Md32/7)$( {M_d^{32/7}} )$ as the optimal FSM to identify wind turbine tower modes, by combining with noise resistance analysis, sensitivity analysis, and stability analysis, respectively. Using the proposed method, the FSM was first used to identify the modal vibration of wind turbine towers. By obtaining the response of the structure on the same vertical line, FSM was then calculated to estimate the corresponding structural modal vibration. Considering other influencing factors in the field test, the modal identification results of this index under different excitation forms and noise conditions were analyzed based on numerical simulation and verified with field wind tower test data. The results of the evaluation show that the proposed statistical moments of Md32/7$M_d^{32/7}$ can accurately identify the first two vibration modes of wind turbine towers. This presents a new robust method for modal vibration identification, that is, simple and effective in its implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最优分数阶统计矩的风力涡轮机塔架模态识别
在土木工程结构的振动测试中,前两个振动模式对于代表所测结构的整体动态行为至关重要。本研究基于分数阶统计力矩(FSM)分析,提出了一种识别风力涡轮机塔架前两个振动模式的综合方法。本研究在两个关键方面做出了新贡献:(1)从理论上推导了 FSM 与振动模式之间的关系;(2)分别结合噪声阻力分析、灵敏度分析和稳定性分析,成功使用 32/7 阶位移统计力矩(Md32/7)$( {M_d^{32/7}} )$ 作为识别风机塔架模式的最优 FSM。利用所提出的方法,FSM 首先用于识别风机塔架的模态振动。通过获取同一垂直线上的结构响应,然后计算 FSM 以估算相应的结构模态振动。考虑到现场试验中的其他影响因素,基于数值模拟分析了该指标在不同激励形式和噪声条件下的模态识别结果,并与现场风塔试验数据进行了验证。评估结果表明,所提出的 Md32/7$M_d^{32/7}$ 统计矩能够准确识别风机塔架的前两个振动模态。这提出了一种新的稳健的模态振动识别方法,其实施简单而有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Automated seismic event detection considering faulty data interference using deep learning and Bayesian fusion Smartphone-based high durable strain sensor with sub-pixel-level accuracy and adjustable camera position Reinforcement learning-based approach for urban road project scheduling considering alternative closure types Issue Information Cover Image, Volume 39, Issue 23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1