{"title":"Enhanced three-dimensional instance segmentation using multi-feature extracting point cloud neural network","authors":"Hongxu Wang, Jiepeng Liu, Dongsheng Li, Tianze Chen, Pengkun Liu, Han Yan, Yadong Wu","doi":"10.1111/mice.13430","DOIUrl":null,"url":null,"abstract":"Precise three-dimensional (3D) instance segmentation of indoor scenes plays a critical role in civil engineering, including reverse engineering, size detection, and advanced structural analysis. However, existing methods often fall short in accurately segmenting complex indoor environments due to challenges of diverse material textures, irregular object shapes, and inadequate datasets. To address these limitations, this paper introduces StructNet3D, a point cloud neural network specifically designed for instance segmentation in indoor components including ceilings, floors, and walls. StructNet3D employs a novel multi-scale 3D U-Net backbone integrated with ArchExtract, which designed to capture both global context and local structural details, enabling precise segmentation of diverse indoor environments. Compared to other methods, StructNet3D achieved an AP50 of 87.7 on the proprietary dataset and 68.6 on the S3DIS dataset, demonstrating its effectiveness in accurately segmenting and classifying major structural components within diverse indoor environments.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"58 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13430","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Precise three-dimensional (3D) instance segmentation of indoor scenes plays a critical role in civil engineering, including reverse engineering, size detection, and advanced structural analysis. However, existing methods often fall short in accurately segmenting complex indoor environments due to challenges of diverse material textures, irregular object shapes, and inadequate datasets. To address these limitations, this paper introduces StructNet3D, a point cloud neural network specifically designed for instance segmentation in indoor components including ceilings, floors, and walls. StructNet3D employs a novel multi-scale 3D U-Net backbone integrated with ArchExtract, which designed to capture both global context and local structural details, enabling precise segmentation of diverse indoor environments. Compared to other methods, StructNet3D achieved an AP50 of 87.7 on the proprietary dataset and 68.6 on the S3DIS dataset, demonstrating its effectiveness in accurately segmenting and classifying major structural components within diverse indoor environments.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.