ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs

Anthony A. Gatti;Louis Blankemeier;Dave Van Veen;Brian Hargreaves;Scott L. Delp;Garry E. Gold;Feliks Kogan;Akshay S. Chaudhari
{"title":"ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs","authors":"Anthony A. Gatti;Louis Blankemeier;Dave Van Veen;Brian Hargreaves;Scott L. Delp;Garry E. Gold;Feliks Kogan;Akshay S. Chaudhari","doi":"10.1109/TMI.2024.3485613","DOIUrl":null,"url":null,"abstract":"Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee, a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and two implicit neural shape models. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers (root mean squared error ≤ 0.05 vs. ≤ 0.07, 0.10, and 0.14). Our models are also the first to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations (e.g., osteophyte size and localization 63% accuracy vs. 49-61%). The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks are freely accessible.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1140-1152"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10735783/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee, a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and two implicit neural shape models. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers (root mean squared error ≤ 0.05 vs. ≤ 0.07, 0.10, and 0.14). Our models are also the first to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations (e.g., osteophyte size and localization 63% accuracy vs. 49-61%). The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks are freely accessible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ShapeMed-Knee:用于三维股骨建模的数据集和神经形状模型基准
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replace2Self: Self-Supervised Denoising based on Voxel Replacing and Image Mixing for Diffusion MRI. Table of Contents Blood Oxygenation Quantification in Multispectral Photoacoustic Tomography Using A Convex Cone Approach. DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis. Speckle Denoising of Dynamic Contrast-enhanced Ultrasound using Low-rank Tensor Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1