Alessandro Brewster, Arjan Oudshoorn, Marion van Lotringen, Pieter Nelisse, Emily van den Berg, Marijke Luttik, Jean-Marc Daran
{"title":"Inhibition Control by Continuous Extractive Fermentation Enhances De Novo 2-Phenylethanol Production by Yeast","authors":"Alessandro Brewster, Arjan Oudshoorn, Marion van Lotringen, Pieter Nelisse, Emily van den Berg, Marijke Luttik, Jean-Marc Daran","doi":"10.1002/bit.28872","DOIUrl":null,"url":null,"abstract":"Current microbial cell factory methods for producing chemicals from renewable resources primarily rely on (fed-)batch production systems, leading to the accumulation of the desired product. Industrially relevant chemicals like 2-phenylethanol (2PE), a flavor and fragrance compound, can exhibit toxicity at low concentrations, inhibit the host activity, and negatively impact titer, rate, and yield. Batch liquid-liquid (L-L) In Situ Product Removal (ISPR) was employed to mitigate inhibition effects, but was not found sufficient for industrial-scale application. Here, we demonstrated that continuous selective L-L ISPR provides the solution for maintaining the productivity of de novo produced 2PE at an industrial pilot scale. A unique bioreactor concept called “Fermentation Accelerated by Separation Technology” (FAST) utilizes hydrostatic pressure differences to separate aqueous- and extractant streams within one unit operation, where both production and product extraction take place - allowing for the control of the concentration of the inhibiting compound. Controlled aqueous 2PE levels (0.43 ± 0.02 g kg<sup>−1</sup>) and extended production times (>100 h) were obtained and co-inhibiting by-product formation was reduced, resulting in a twofold increase of the final product output of batch L-L ISPR approaches. This study establishes that continuous selective L-L ISPR, enabled by FAST, can be applied for more economically viable production of inhibiting products.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"67 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28872","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current microbial cell factory methods for producing chemicals from renewable resources primarily rely on (fed-)batch production systems, leading to the accumulation of the desired product. Industrially relevant chemicals like 2-phenylethanol (2PE), a flavor and fragrance compound, can exhibit toxicity at low concentrations, inhibit the host activity, and negatively impact titer, rate, and yield. Batch liquid-liquid (L-L) In Situ Product Removal (ISPR) was employed to mitigate inhibition effects, but was not found sufficient for industrial-scale application. Here, we demonstrated that continuous selective L-L ISPR provides the solution for maintaining the productivity of de novo produced 2PE at an industrial pilot scale. A unique bioreactor concept called “Fermentation Accelerated by Separation Technology” (FAST) utilizes hydrostatic pressure differences to separate aqueous- and extractant streams within one unit operation, where both production and product extraction take place - allowing for the control of the concentration of the inhibiting compound. Controlled aqueous 2PE levels (0.43 ± 0.02 g kg−1) and extended production times (>100 h) were obtained and co-inhibiting by-product formation was reduced, resulting in a twofold increase of the final product output of batch L-L ISPR approaches. This study establishes that continuous selective L-L ISPR, enabled by FAST, can be applied for more economically viable production of inhibiting products.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.