Melissa A. Edeling, Linda Earnest, Julio Carrera Montoya, Ashley Huey Yiing Yap, Jamie Mumford, Jason Roberts, Chinn Yi Wong, Dhiraj Hans, Joseph Grima, Nicole Bisset, Jesse Bodle, Steven Rockman, Joseph Torresi
{"title":"Development of Methods to Produce SARS CoV-2 Virus-Like Particles at Scale","authors":"Melissa A. Edeling, Linda Earnest, Julio Carrera Montoya, Ashley Huey Yiing Yap, Jamie Mumford, Jason Roberts, Chinn Yi Wong, Dhiraj Hans, Joseph Grima, Nicole Bisset, Jesse Bodle, Steven Rockman, Joseph Torresi","doi":"10.1002/bit.28937","DOIUrl":null,"url":null,"abstract":"The devastating global toll precipitated by the SARS CoV-2 outbreak and the profound impact of vaccines in stemming that outbreak has established the need for molecular platforms capable of rapidly delivering effective, safe and accessible medical interventions in pandemic preparedness. We describe a simple, efficient and adaptable process to produce SARS CoV-2 virus-like particles (VLPs) that can be readily scaled for manufacturing. A rapid but gentle method of tangential flow filtration using a 100 kDa semi-permeable membrane concentrates and buffer exchanges 0.5 L of SARS CoV-2 VLP containing supernatant into low salt and optimal pH for anion exchange chromatography. VLPs are washed, eluted under high salt, dialyzed into physiological buffer, sterile filtered and aliquoted for storage at –80°C. Purification is completed in less than 2 days. A simple quality control process includes Western blot for coincident detection of Spike, Membrane and Envelope protein as a proxy for intact VLP, ELISA to detect conformationally sensitive Spike using readily available anti-Spike and/or anti-RBD antibodies, and negative stain and immunogold electron microscopy to validate particulate, Spike crowned VLPs. This process to produce SARS CoV-2 VLPs for preclinical studies serves as a roadmap for preparation of more distantly related VLPs for pandemic preparedness.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28937","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The devastating global toll precipitated by the SARS CoV-2 outbreak and the profound impact of vaccines in stemming that outbreak has established the need for molecular platforms capable of rapidly delivering effective, safe and accessible medical interventions in pandemic preparedness. We describe a simple, efficient and adaptable process to produce SARS CoV-2 virus-like particles (VLPs) that can be readily scaled for manufacturing. A rapid but gentle method of tangential flow filtration using a 100 kDa semi-permeable membrane concentrates and buffer exchanges 0.5 L of SARS CoV-2 VLP containing supernatant into low salt and optimal pH for anion exchange chromatography. VLPs are washed, eluted under high salt, dialyzed into physiological buffer, sterile filtered and aliquoted for storage at –80°C. Purification is completed in less than 2 days. A simple quality control process includes Western blot for coincident detection of Spike, Membrane and Envelope protein as a proxy for intact VLP, ELISA to detect conformationally sensitive Spike using readily available anti-Spike and/or anti-RBD antibodies, and negative stain and immunogold electron microscopy to validate particulate, Spike crowned VLPs. This process to produce SARS CoV-2 VLPs for preclinical studies serves as a roadmap for preparation of more distantly related VLPs for pandemic preparedness.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.